簡易檢索 / 詳目顯示

研究生: 林虹吟
Lin, Hong-Yin
論文名稱: 具有靠近通帶的傳輸零點之微波帶通濾波器設計
Design of Microwave Band-Pass Filters with Near-Passband Transmission Zeros
指導教授: 蔡智明
Tsai, Chih-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 122
中文關鍵詞: 與頻率有關之耦合倒轉器
外文關鍵詞: Frequency-dependent coupling, Inverter
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文整理過去文獻中兩種利用非交錯耦合架構產生傳輸零點的方式,其一稱為混合性耦合,另一則為與頻率有關之耦合,經過比較分析其物理相同,當諧振器間同時存在電場及磁場耦合時,兩者不僅相位相反並且大小隨頻率的變率也不同,因此有可能於某一頻率點耦合會相抵消,因而產生傳輸零點。兩種方法中又以與頻率有關之耦合設計理論最為完善,但其耦合矩陣求取之過程過於複雜,因此本論文藉由分析此文獻中之電路架構,提出另外一種較為簡單的設計方式。本論文以半波長傳輸線諧振器和阻抗倒轉器所組成之傳統帶通濾波器為基礎架構,於倒轉器內引入並聯開路殘段,使其除了具有耦合的基本功能之外,亦具備產生額外傳輸零點的用途,此倒轉器與傳統的倒轉器不同,其隨頻率會有明顯變化,因此不可單只對倒轉器做設計,應將整個電路去做討論,本論文提出各種不同分析方式,其中又以依濾波器規格推演之散射參數設計法最為簡單有效,只需利用三個條件即可設計出具有傳輸零點的帶通濾波器。
    根據過去文獻,對邊開路耦合線可等效成兩段四分之一波長傳輸線中間含有倒轉器之電路,而事實上對邊短路耦合線也可於窄頻近似等效成相同結構,並可用於上述電路中,因此本論文利用ABCD矩陣推導出其等效公式。最後根據文獻中之相同規格,本論文利用上述方法設計出含有兩個傳輸零點之三階帶通濾波器,再將輸入輸出端之電路以對邊短路耦合線之架構等效,與文獻中之電路做比較後,結果顯示本論文能以較簡易的方式設計出與文獻相似響應的濾波器。

    In this research, we have studied the papers on the generation of filter transmission zeros by coupling structures. Firstly, the characteristics of band-pass filters with transmission zeros are studied. Then, a design based on half-wavelength transmission-line resonators and a new type of inverters is proposed. With the help of an embedded shunt open stub, this new type of inverters is capable of providing the needed coupling and generating a transmission zero. Therefore, they are different from the traditional ones. However, because they are strongly dependent on frequencies, we can’t ignore their different effect at each frequency of the passband. The new inverters and resonators are so closely related that they must be designed together. Three conditions of the scattering parameters are proposed to facilitate this design of a band-pass filter with transmission zeros close to its passband. This design method has been successfully verified by simulations and experiments.

    第一章 緒論 1 1-1 研究動機 1 1-2 論文簡介 2 第二章 具有傳輸零點的Chebyshev濾波器之設計與比較 3 2-1 Chu的耦合濾波器設計 3 2-1-1 諧振器間耦合型態 3 2-1-2 混合性耦合 6 2-2 Szydlowski的耦合濾波器設計 9 2-2-1 與頻率呈線性關係之耦合 9 2-2-2 交錯耦合濾波器 11 2-2-3 耦合矩陣之求取 14 2-3 Chu濾波器與Szydlowski濾波器之比較 21 第三章 具有傳輸零點的Chebyshev濾波器之簡易設計方法 30 3-1 具有傳輸零點的Chebyshev濾波器之分析 30 3-1-1 具有傳輸零點的Chebyshev濾波器之電路分析 31 3-1-2 具有傳輸零點的Chebyshev濾波器之導納分析 41 3-1-3 Kuroda轉換之近似電路 47 3-2 具有傳輸零點的Chebyshev帶通濾波器之設計 54 3-2-1 類倒轉器之耦合架構設計 55 3-2-2 新倒轉器之耦合架構設計 58 3-2-3 Y參數之設計條件 61 3-2-4 S參數之設計條件 69 3-2-5 對邊短路耦合線之窄頻等效電路 74 3-2-6 電路範例 81 第四章 引入與頻率有關之耦合的交錯耦合濾波器 88 4-1 三階交錯耦合濾波器 88 4-1-1 三階交錯耦合濾波器Ⅰ 88 4-1-2 三階交錯耦合濾波器Ⅱ 92 4-2 四階交錯耦合濾波器 97 4-2-1 四階交錯耦合濾波器Ⅰ 97 4-2-2 四階交錯耦合濾波器Ⅱ 102 4-3 電路範例 107 第五章 實作與量測 109 5-1 具有傳輸零點之二階帶通濾波器的實作與量測 109 5-2 具有傳輸零點之二階帶通濾波器的實作與量測誤差與分析 115 第六章 結論與未來展望 116 6-1 結論 116 6-2 未來展望 117 參考文獻 118

    [1.1] R. Levy and P. Petre, “Design of CT and CQ filters using approximation and optimization,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, pp. 2350-2356, Dec. 2001.
    [1.2] Q. -X. Chu and H. Wang, “A compact open-loop filter with mixed electric and magnetic coupling,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 431-439, Feb. 2008.
    [1.3] L. Szydlowski, A. Lamecki, and M. Mrozowski, “Coupled-resonator filters with frequency-dependent couplings: Coupling matrix synthesis,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 6, pp. 312-314, Jun. 2012.
    [1.4] L. Szydlowski, N. Leszczynska, and M. Mrozowski, “Generalized Chebyshev bandpass filters with frequency-dependent couplings based on stubs,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3601-3612, Oct. 2013.
    [1.5] J. B. Thomas, “Cross-coupling in coaxial cavity filters—A tutorial overview,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1368-1376, Apr. 2003.
    [2.1] R. Levy and P. Petre, “Design of CT and CQ filters using approximation and optimization,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, pp. 2350-2356, Dec. 2001.
    [2.2] Q. -X. Chu and H. Wang, “A compact open-loop filter with mixed electric and magnetic coupling,” IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, pp. 431-439, Feb. 2008.
    [2.3] L. Szydlowski, A. Lamecki, and M. Mrozowski, “Coupled-resonator filters with frequency-dependent couplings: Coupling matrix synthesis,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 6, pp.312-314, Jun. 2012.
    [2.4] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Chapter 8 and 10, New York, Wiley, 2001.
    [2.5] David M. Pozar, Microwave Engineering, Chapter 7 and 9, Addison-Wesley, 1993.
    [2.6] A. E. Atia and A. E. Williams, “Narrow-Bandpass Waveguide Filters,” IEEE Trans. Microw. Theory Tech., vol. MTT-20, pp. 258-265, Apr. 1972.
    [2.7] W. Meng, H.-M. Lee, K. A. Zaki, and A. E. Atia, “Synthesis of wideband multicoupled resonators filters,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 3, pp. 593-603, Mar. 2011.
    [2.8] S. Amari, M. Bekheit, and F. Seyfert, “Notes on bandpass filters whose inter-resonator coupling coefficients are linear functions of frequency,” in IEEE MTT-S Int. Dig., pp. 1207-1210, Jun. 2008.
    [2.9] J. B. Thomas, “Cross-coupling in coaxial cavity filters—A tutorial overview,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1368-1376, Apr. 2003.
    [2.10] L. Szydlowski, A. Lamecki, and M. Mrozowski, “Coupled-resonator waveguide filter in quadruplet topology with frequency-dependent coupling—A design based on coupling matrix,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 6, pp. 553-555, Jun. 2012.
    [2.11] V. Miraftab and M. Yu, “Advanced coupling matrix and admittance function synthesis techniques for dissipative microwave filters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 10, pp. 2429-2438, Oct. 2009.
    [2.12] A. Lamecki, P. Kozakowski, and M. Mrozowski, “Fast synthesis of coupled-resonator filters,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 174-176, Apr. 2004.
    [2.13] M. T. Chu and G. H. Golub, “Structured inverse eigenvalue problems,” in Acta Numerica, vol. 11, pp. 1-71, Jan. 2002.
    [2.14] R. Cameron, C. Kudsia, and R. Mansour, Microwave Filters for Communication Syst. New York, NY, USA: Wiley, 2007.
    [2.15] P. Kozakowski and M. Mrozowski, “Quadratic programming approach to coupled resonator filter CAD,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 11, pp. 3906-3913, Nov. 2006.
    [3.1] Q. -X. Chu and H. Wang, “A compact open-loop filter with mixed electric and magnetic coupling,” IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, pp. 431-439, Feb. 2008.
    [3.2] L. Szydlowski, A. Lamecki, and M. Mrozowski, “Coupled-resonator filters with frequency-dependent couplings: Coupling matrix synthesis,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 6, pp. 312-314, Jun. 2012.
    [3.3] L. Szydlowski, N. Leszczynska, and M. Mrozowski, “Generalized Chebyshev bandpass filters with frequency-dependent couplings based on stubs,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3601-3612, Oct. 2013.
    [3.4] R. Levy, “A general equivalent circuit transformation for distributed networks,” IEEE Trans. Circuit Theory, vol. CT-12, pp. 457-458, Sept. 1965.
    [3.5] G. Matthaei, “Design of wide-band (and narrow-band) bandpass microwave filters on the insertion loss basis“, IRE Trans. Microw. Theory Tech., vol. 8, no. 11, pp. 580 -593, Nov. 1960.
    [3.6] R. Cameron, C. Kudsia, and R. Mansour, Microwave Filters for Communication Systems, page 506, New York, 2007.
    [3.7] P. I. Richards, “Resistor-Transmission-Line Circuits,” Proc. IRE, vol. 36, no. 2, pp. 217-220, Feb. 1948.
    [3.8] S. B. Cohn, “Parallel coupled transmission-line-resonator filters,” IRE Trans. Microwave Theory Tech., vol. 6, no. 2, pp. 223-231, Apr. 1958.
    [3.9] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413-1417, Dec. 1980.
    [3.10] G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Chapter 5, Norwood, MA: Artech House, 1980.
    [4.1] J. B. Thomas, “Cross-coupling in coaxial cavity filters—A tutorial overview,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1368-1376, Apr. 2003.
    [4.2] L. Szydlowski, N. Leszczynska, and M. Mrozowski, “Generalized Chebyshev bandpass filters with frequency-dependent couplings based on stubs,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3601-3612, Oct. 2013.

    無法下載圖示 校內:2025-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE