| 研究生: |
陳亮穎 Chen, Liang-Ying |
|---|---|
| 論文名稱: |
應用實驗設計與疲勞分析於具有深度邊緣之第二類窩洞形狀最佳化設計 Optimizing Class II Cavity Shape with Deep Margin Elevation via Design of Experiments and Fatigue Analysis |
| 指導教授: |
林啟倫
Lin, Chi-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 深度邊緣提升術 、窩洞最佳化 、參數研究 、有限元素分析 |
| 外文關鍵詞: | deep margin elevation, cavity design, finite element analysis, parametric study |
| 相關次數: | 點閱:77 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
深度邊緣一直是存在在牙科臨床上的問題。除了透過侵入式的手術方式,近二十年來有許多學者提出於窩洞底補填補ㄧ層DME提升層後,再進行後續的復形。然而多填補了DME提升層對於整體牙齒結構的力學表現需多加討論。此外,DME提升層的厚度、窩洞形狀的設計,亦是影響牙齒結構的因素。因此,本研究透過疲勞分析與實驗設計方法期望藉者改善窩洞形狀的設計提高黏著層介面的使用壽命。
首先取得ㄧ健康的人類三維小臼齒模型,並透過ANSYS中的幾何模組DesignModeler建立窩洞。窩洞的幾何形狀則由L18田口直交表依各參數排列,建立出18組不同設計的窩洞。由有限元素分析軟體ANSYS進行數值的疲勞分析,找出各組模型對黏著層壽命的影響,並透過田口品質工程分析、響應曲面法將設計參數進行最佳化的排列,以達到窩洞長久的使用性,並給予臨床醫師設計的建議。最後,透過簡易的離體實驗,驗證整個研究方法的可行性與正確性。
本研究之結果發現,不管是模擬、或是實驗的結果,皆可以觀察到不同的窩洞幾何設計對牙齒結構的力學表現都有一定程度的影響。在窩洞設計方面,峽部寬度與鄰接盒之縱向深度是臨床醫生在治療時需要多加留意的,而DME提升層的厚度對力學表現則沒有太大的影響。
本研究提出的方法與結果,透過工程上的科學化的方法結合生物力學的分析,並透過離體實驗驗證研究方法在牙科生物力學上的可行性。
The purpose of this study was to evaluate the durability of class II cavities restored with deep margin elevation procedures using numerical fatigue analysis and optimize the cavity shape via a series of parametric studies with Taguchi method and response surface method. Two materials of the inlay, lithium disilicate and feldspathic porcelain, were tested. For verifying the full process, a simplified experiment was used. In parametric study results, the size selection of Lp and W should be more cautious. In experiment results, the design of cavity shape could be appropriately obtained the lowest failure risk. The engineering methods could be applied to the dental field, and it could also make better clinical suggestions and feedback to the dentists through scientific results.
[1] P. Magne and R. C. Spreafico, "Deep margin elevation: a paradigm shift," Am J Esthet Dent, vol. 2, no. 2, 2012.
[2] D. Dietschi, S. Olsburgh, I. Krejci, and C. Davidson, "In vitro evaluation of marginal and internal adaptation after occlusal stressing of indirect class II composite restorations with different resinous bases," European journal of oral sciences, vol. 111, no. 1, pp. 73-80, 2003.
[3] A. B. Dablanca-Blanco, J. Blanco-Carrión, B. Martín-Biedma, P. Varela-Patiño, A. Bello-Castro, and P. Castelo-Baz, "Management of large class II lesions in molars: how to restore and when to perform surgical crown lengthening?," Restorative Dentistry & Endodontics, vol. 42, no. 3, pp. 240-252, 2017.
[4] G. Mount, "A new paradigm for operative dentistry," Australian dental journal, vol. 52, no. 4, pp. 264-270, 2007.
[5] Wikipedia contributors. (31 May 2019 07:15 UTC). Greene Vardiman Black. Available: https://en.wikipedia.org/w/index.php?title=Greene_Vardiman_Black&oldid=878254054
[6] D. Assif, R. Pilo, and B. Marshak, "Restoring teeth following crown lengthening procedures," Journal of Prosthetic Dentistry, vol. 65, no. 1, pp. 62-64, 1991.
[7] G. K. Johnson and J. E. Sivers, "Forced eruption in crown-lengthening procedures," Journal of Prosthetic Dentistry, vol. 56, no. 4, pp. 424-427, 1986.
[8] A. Aboushala, G. Kugel, and E. Hurley, "Class II composite resin restorations using glass-ionomer liners: microleakage studies," The Journal of clinical pediatric dentistry, vol. 21, no. 1, pp. 67-70, 1996.
[9] G. Mount, "The wettability of bonding resins used in the composite resin/glass ionomer ‘sandwich technique’," Australian dental journal, vol. 34, no. 1, pp. 32-35, 1989.
[10] A. Agha, S. Parker, and M. P. Patel, "Development of experimental resin modified glass ionomer cements (RMGICs) with reduced water uptake and dimensional change," Dental materials, vol. 32, no. 6, pp. 713-722, 2016.
[11] J. Van Dijken, C. Kieri, and M. Carlen, "Longevity of extensive class II open-sandwich restorations with a resin-modified glass-ionomer cement," Journal of dental research, vol. 78, no. 7, pp. 1319-1325, 1999.
[12] M. Tyas and M. Burrow, "Adhesive restorative materials: a review," Australian Dental Journal, vol. 49, no. 3, pp. 112-121, 2004.
[13] R. R. Welbury and J. J. Murray, "A clinical trial of the glass-ionomer cement-composite resin" sandwich" technique in Class II cavities in permanent premolar and molar teeth," Quintessence International, vol. 21, no. 6, 1990.
[14] D. Dietschi and R. Spreafico, "Current clinical concepts for adhesive cementation of tooth-colored posterior restorations," Practical periodontics and aesthetic dentistry: PPAD, vol. 10, no. 1, pp. 47-54; quiz 56, 1998.
[15] C. Frese, D. Wolff, and H. Staehle, "Proximal box elevation with resin composite and the dogma of biological width: clinical R2-technique and critical review," Operative dentistry, vol. 39, no. 1, pp. 22-31, 2014.
[16] J. H. Payne, "The marginal seal of Class II restorations: flowable composite resin compared to injectable glass ionomer," The Journal of clinical pediatric dentistry, vol. 23, no. 2, p. 123, 1999.
[17] M. J. Tyas, "Clinical evaluation of glass-ionomer cement restorations," Journal of Applied Oral Science, vol. 14, no. SPE, pp. 10-13, 2006.
[18] C.-P. Ernst, K. Canbek, K. Aksogan, and B. Willershausen, "Two-year clinical performance of a packable posterior composite with and without a flowable composite liner," Clinical Oral Investigations, vol. 7, no. 3, pp. 129-134, 2003.
[19] P. Magne, W.-S. So, and D. Cascione, "Immediate dentin sealing supports delayed restoration placement," Journal of Prosthetic Dentistry, vol. 98, no. 3, pp. 166-174, 2007.
[20] M. Veneziani, "Adhesive restorations in the posterior area with subgingival cervical margins: new classification and differentiated treatment approach," Eur J Esthet Dent, vol. 5, no. 1, pp. 50-76, 2010.
[21] G. T. Rocca and I. Krejci, "Bonded indirect restorations for posterior teeth: from cavity preparation to provisionalization," Quintessence International, vol. 38, no. 5, pp. 371-9, 2007.
[22] J. Juloski, S. Köken, and M. Ferrari, "Cervical margin relocation in indirect adhesive restorations: A literature review," Journal of prosthodontic research, 2017.
[23] M. J. Roggendorf, N. Krämer, C. Dippold, V. E. Vosen, M. Naumann, A. Jablonski-Momeni, and R. Frankenberger, "Effect of proximal box elevation with resin composite on marginal quality of resin composite inlays in vitro," Journal of dentistry, vol. 40, no. 12, pp. 1068-1073, 2012.
[24] A. Lindberg, J. Van Dijken, and P. Hörstedt, "In vivo interfacial adaptation of class II resin composite restorations with and without a flowable resin composite liner," Clinical Oral Investigations, vol. 9, no. 2, pp. 77-83, 2005.
[25] M. J. Sandoval, G. T. Rocca, I. Krejci, M. Mandikos, and D. Dietschi, "In vitro evaluation of marginal and internal adaptation of class II CAD/CAM ceramic restorations with different resinous bases and interface treatments," Clinical oral investigations, vol. 19, no. 9, pp. 2167-2177, 2015.
[26] I. Ilgenstein, N. U. Zitzmann, J. Bühler, F. J. Wegehaupt, T. Attin, R. Weiger, and G. Krastl, "Influence of proximal box elevation on the marginal quality and fracture behavior of root-filled molars restored with CAD/CAM ceramic or composite onlays," Clinical oral investigations, vol. 19, no. 5, pp. 1021-1028, 2015.
[27] L. Steagall, A. Ishikiriama, M. F. de Lima Navarro, and F. B. Soares, "Fracture strength of human teeth with cavity preparations," Journal of Prosthetic Dentistry, vol. 43, no. 4, pp. 419-422, 1980.
[28] M. L. Mei, Y. M. Chen, H. Li, and C. H. Chu, "Influence of the indirect restoration design on the fracture resistance: a finite element study," Biomedical engineering online, vol. 15, no. 1, p. 3, 2016.
[29] C.-L. Lin, Y.-H. Chang, and P.-R. Liu, "Multi-factorial analysis of a cusp-replacing adhesive premolar restoration: a finite element study," Journal of dentistry, vol. 36, no. 3, pp. 194-203, 2008.
[30] G. Couegnat, S. L. Fok, J. E. Cooper, and A. J. Qualtrough, "Structural optimization of dental restorations using the principle of adaptive growth," Dental Materials, vol. 22, no. 1, pp. 3-12, 2006.
[31] 侯均憲, "應用有限元素分析法於具有深度邊緣提升層之第二類窩洞嵌體設計參數研究," 成功大學機械工程學系學位論文, pp. 1-99, 2017.
[32] P. Ausiello, P. Franciosa, M. Martorelli, and D. C. Watts, "Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth," dental materials, vol. 27, no. 5, pp. 423-430, 2011.
[33] E. Homaei, X.-Z. Jin, E. H. N. Pow, J. P. Matinlinna, J. K.-H. Tsoi, and K. Farhangdoost, "Numerical fatigue analysis of premolars restored by CAD/CAM ceramic crowns," Dental Materials, 2018.
[34] A. Rosidi, T. L. Ginta, and A. M. B. A. Rani, "Optimization of bone drilling parameters using Taguchi method based on finite element analysis," in IOP Conference Series: Materials Science and Engineering, 2017, vol. 203, no. 1, p. 012016: IOP Publishing.
[35] C.-L. Lin, W.-J. Chang, Y.-S. Lin, Y.-H. Chang, and Y.-F. Lin, "Evaluation of the relative contributions of multi-factors in an adhesive MOD restoration using FEA and the Taguchi method," dental materials, vol. 25, no. 9, pp. 1073-1081, 2009.
[36] L. Kandráč, I. Maňková, M. Vrabel, and J. Beňo, "Finite element simulation of cutting forces in orthogonal machining of titanium alloy Ti-6Al-4V," in Applied Mechanics and Materials, 2014, vol. 474, pp. 192-199: Trans Tech Publ.
[37] M. A. Helal and Z. Wang, "Biomechanical Assessment of Restored Mandibular Molar by Endocrown in Comparison to a Glass Fiber Post‐Retained Conventional Crown: 3D Finite Element Analysis," Journal of Prosthodontics, 2017.
[38] M. Toparli, "Stress analysis in a post‐restored tooth utilizing the finite element method," Journal of oral rehabilitation, vol. 30, no. 5, pp. 470-476, 2003.
[39] D. Bozkaya, S. Muftu, and A. Muftu, "Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis," The Journal of prosthetic dentistry, vol. 92, no. 6, pp. 523-530, 2004.
[40] C. Shen, E. Mondragon, V. V. Gordan, and I. A. Mjoär, "The effect of mechanical undercuts on the strength of composite repair," The Journal of the American Dental Association, vol. 135, no. 10, pp. 1406-1412, 2004.
[41] V. Singh, A. Misra, O. Marangos, J. Park, Q. Ye, S. L. Kieweg, and P. Spencer, "Fatigue life prediction of dentin–adhesive interface using micromechanical stress analysis," dental materials, vol. 27, no. 9, pp. e187-e195, 2011.
[42] T. M. Espe. (27 June 2019 16:15 UTC). Automix Cement. Available: http://solutions.3mae.ae/wps/portal/3M/en_AE/3M_ESPE/Dental-Manufacturers/Products/Dental-Indirect-Restorative/Dental-Cement/Automix-Cement/
[43] H. Ai and M. Nagai, "Effect of the adhesive layer thickness on the fracture toughness of dental adhesive resins," Dental materials journal, vol. 19, no. 2, pp. 153-163, 2000.
[44] D. Rekow and V. P. Thompson, "Engineering long term clinical success of advanced ceramic prostheses," Journal of Materials Science: Materials in Medicine, vol. 18, no. 1, pp. 47-56, 2007.
[45] O. Basquin, "The exponential law of endurance tests," in Proc Am Soc Test Mater, 1910, vol. 10, pp. 625-630.
[46] E. Homaei, K. Farhangdoost, J. K. H. Tsoi, J. P. Matinlinna, and E. H. N. Pow, "Static and fatigue mechanical behavior of three dental CAD/CAM ceramics," journal of the mechanical behavior of biomedical materials, vol. 59, pp. 304-313, 2016.
[47] V. Schultze, B. Schillig, R. IJsselsteijn, T. Scholtes, S. Woetzel, and R. Stolz, "An optically pumped magnetometer working in the light-shift dispersed Mz mode," Sensors, vol. 17, no. 3, p. 561, 2017.
[48] Vita. (27 June 2019 16:15 UTC). VITA CAD-Temp multiColor. Available: https://www.vita-zahnfabrik.com/en/VITA-CAD-Temp-multiColor-25330,27568.html
[49] R. V. Mesquita, D. Axmann, and J. Geis-Gerstorfer, "Dynamic visco-elastic properties of dental composite resins," Dental Materials, vol. 22, no. 3, pp. 258-267, 2006.
[50] I. D. Sener-Yamaner, B. Ekici, A. Sertgöz, E. Yuzbasioglu, and M. Özcan, "Finite element analysis on the optimal material choice and cavity design parameters for MOD inlays exposed to different force vectors and magnitudes," Journal of adhesion science and Technology, vol. 31, no. 1, pp. 8-20, 2017.
[51] P. Magne, N. Perakis, U. C. Belser, and I. Krejci, "Stress distribution of inlay-anchored adhesive fixed partial dentures: a finite element analysis of the influence of restorative materials and abutment preparation design," The journal of prosthetic dentistry, vol. 87, no. 5, pp. 516-528, 2002.
[52] K. Yamanel, A. Çaglar, K. Gülsahi, and U. A. Özden, "Effects of different ceramic and composite materials on stress distribution in inlay and onlay cavities: 3-D finite element analysis," Dental materials journal, vol. 28, no. 6, pp. 661-670, 2009.
[53] L. Boschian Pest, S. Guidotti, R. Pietrabissa, and M. Gagliani, "Stress distribution in a post‐restored tooth using the three‐dimensional finite element method," Journal of oral rehabilitation, vol. 33, no. 9, pp. 690-697, 2006.
[54] C. A. Murdoch-Kinch and M. E. McLean, "Minimally invasive dentistry," The Journal of the American Dental Association, vol. 134, no. 1, pp. 87-95, 2003.
[55] Z. Zhang, K. Zheng, E. Li, W. Li, Q. Li, and M. V. Swain, "Mechanical benefits of conservative restoration for dental fissure caries," Journal of the mechanical behavior of biomedical materials, vol. 53, pp. 11-20, 2016.
[56] C. Rosatto, A. Bicalho, C. Veríssimo, G. Bragança, M. Rodrigues, D. Tantbirojn, A. Versluis, and C. Soares, "Mechanical properties, shrinkage stress, cuspal strain and fracture resistance of molars restored with bulk-fill composites and incremental filling technique," Journal of dentistry, vol. 43, no. 12, pp. 1519-1528, 2015.
[57] B. G. Efes, B. C. Yaman, B. Gümüştaş, and M. Tiryaki, "The effects of glass ionomer and flowable composite liners on the fracture resistance of open-sandwich class II restorations," Dental materials journal, vol. 32, no. 6, pp. 877-882, 2013.
[58] R. Kuijs, W. Fennis, C. Kreulen, F. Roeters, N. Verdonschot, and N. Creugers, "A comparison of fatigue resistance of three materials for cusp-replacing adhesive restorations," Journal of dentistry, vol. 34, no. 1, pp. 19-25, 2006.