簡易檢索 / 詳目顯示

研究生: 蘇文儀
Su, Wen-I
論文名稱: 氧化鉿錫電阻式記憶體之製作與研究
Fabrication and investigation of HfSnO2-based RRAM
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 118
中文關鍵詞: 非揮發性電阻式記憶體氧化鉿錫低設定電壓
外文關鍵詞: Non-volatile RRAM, HfSnO2, low Vset
相關次數: 點閱:57下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們使用HfSnO2 作為 RRAM 的絕緣層。首先,為了比較 HfSnO2 絕緣層的 OxRAM 或 CBRAM 的阻值轉換特性,我們製作了 Al/HfSnO¬2/Pt 和 Ag/HfSnO2/Pt 的RRAM 樣本。測量結果顯示出HfSnO2 CBRAM 在 Vset、電阻和電壓均勻性和耐連續切換次數方面具有更好的性能。
    接下來,我們研究了 HfSnO2 厚度、濺鍍壓力和 O2 比例對 Ag 上電極的 CBRAM 特性的影響。通過改變 HfSnO2 厚度和限流大小,我們知道了 3 個現象: (1) Vset 隨著 HfSnO2 厚度的增加而增加。 (2) 在相同的 RRAM 樣本中,連續切換次數會隨著限流的增加而降低。 (3)當絕緣層足夠厚時,維持電阻的能力會很差。這三種現象告訴我們銀燈絲是如何在電場的作用下形成和斷裂。當 HfSnO2 厚度調整為 40nm,元件的 Vset 為 0.4V,其連續切換次數可超過 1000 次。如果 HfSnO2 厚度降低到 20 nm,其 Vset 將為 0.35V,但它的連續切換次數只剩 306 次。
    然後,我們嘗試通過改變濺鍍壓力來降低 Vset,同時保持超過 1000 次的連續切換次數。當濺鍍壓力為 5 mTorr 時,元件的 Vset 為 0.369 V,其連續切換次數可超過 1000 次。如果濺鍍壓力增加到 10mTorr,則 Vset 降低到 0.352V,但其連續切換次數僅為 637 次。
    為了降低 Vset 的同時保持超過 1000 次連續切換次數,我們試圖改變HfSnO2濺鍍過程中的 Ar/O2 比率。通過將 O2 比率提高到 30%,該元件的 Vset 為 0.33V,並且連續切換次數可以超過 1000 次。如果 O2 比例增加到 40%,Vset 可以降低到 0.3V,但它的連續切換次數只有 200 次。通過改變 HfSnO2 的沉積條件,我們得到了最小 Vset 為 0.33V 的元件,同時保持了 1000 次以上的連續切換次數。
    最後,通過堆疊絕緣層,同時降低了 Vset 和增加連續切換次數。其機制是增加電場集中度,因此可以降低 Vset。結果顯示,2層HfSnO2元件其Vset可以降至0.259V,且其連續切換次數可超過1000次。

    In this study, HfSnO2 ¬was used for the insulating layer of RRAM. First, in order to find out the switching properties of OxRAM or CBRAM of HfSnO2 insulating layer is better, we fabricated Al/HfSnO2/Pt and Ag/HfSnO2/Pt RRAM sample. The measurement result showed that HfSnO2 CBRAM had better performances in terms of Vset, resistance and voltage uniformity and endurance.
    Next, we investigated the effect of HfSnO2 thickness, sputtering pressure and O2 ratio on the switching properties of CBRAM with Ag TE. By changing HfSnO2 thickness and compliance current, we knew 3 phenomena: (1) Vset increases as HfSnO2 thickness increases. (2) In the same RRAM sample, endurance decreases as compliance current increases. (3) When the insulator layer is thick enough, retention will be poor. These 3 phenomena told us how Ag filament was formed and ruptured by external electric field. By adjusting the HfSnO2 thickness to 40nm, the sample had a V¬set of 0.4V and its endurance could exceed 1000 cycles. If the HfSnO2 thickness was decreased to 20 nm, its Vset would be 0.35V. But its endurance was only 306 cycles.
    Then, we tried to reduce Vset while keeping endurance over 1000 cycles by changing sputtering pressure. When the sputtering pressure was 5 mTorr, the device had a Vset of 0.369 V and its endurance could exceed 1000 cycles. If the sputtering pressure was increased to 10mTorr, the Vset was reduced to 0.352V but its endurance was only 637 cycles.
    With the same goal of reducing Vset while keeping endurance over 1000 cycles, we tried to change the Ar/O2 ratio in the sputtering process. By increasing the O2 ratio to 30%, the device had a V¬set of 0.33V and the endurance could exceed 1000 cycles. If the O2 ratio was increased to 40%, Vset could be reduced to 0.3V, but its endurance was only 200 cycles. Through changing the deposition condition of HfSnO2, we got the device with smallest Vset of 0.33V while keeping its endurance over 1000 cycles.
    Finally, we improved the V¬set and endurance at the same time by stacking the insulating layers. Its mechanism was to increase the electric field concentration and thus Vset could be reduced. The result demonstrated that the device with 2-layer HfSnO¬2 had a Vset of 0.259V and its endurance could exceed 1000 cycles.

    摘要 I Abstract (English) III Acknowledgements V Contents VI Table Captions IX Figure Captions X Chapter 1 Introduction 1 1.1 Introduction to RRAM 1 1.2 RRAM structure and operation 3 1.2.1 RRAM structure 3 1.2.2 RRAM operation 4 1.3 RRAM filamentary model 6 1.3.1 Electrochemical memory (ECM) 7 1.3.2 Valence change memory (VCM) 7 1.4 Motivation 8 Chapter 2 Experiment of HfSnO2 based RRAM 10 2.1 Comparison between Al and Ag top electrode 11 2.1.1 Experimental procedure 11 2.1.2 Result and Discussion 13 2.1.2.1 Forming 13 2.1.2.2 Endurance test 16 2.1.2.3 Retention Test 22 2.2 Conclusion 24 Chapter 3 Ag/HfSnO2/Pt RRAM 25 3.1 Analysis of fabricated HfSnO2 thin film 25 3.1.1 X-ray photoelectron spectroscopy (XPS) analysis 27 3.1.2 Transmission electron microscope (TEM) analysis 32 3.1.3 Atomic Force Microscope (AFM) analysis 35 3.1.4 X-ray diffraction (XRD) analysis 39 3.2 Ag/HfSnO2/Pt with Different Thickness 43 3.2.1 Experimental Procedure 43 3.2.2 Result and Discussion 44 3.2.2.1 Forming Process 44 3.2.2.2 IV Curve 48 3.2.2.3 Endurance Test 52 3.2.2.4 Retention test 73 3.3 Ag/HfSnO2/Pt with different sputtering pressure 76 3.3.1 Experimental procedure 76 3.3.2 Result and discussion 77 3.3.2.1 Forming process 77 3.3.2.2 IV curve 79 3.3.2.3 Endurance test 81 3.4 Ag/HfSnO2/Pt with different O2 ratio 87 3.4.1 Experimental procedure 87 3.4.2 Result and Discussion 88 3.4.2.1 Forming process 88 3.4.2.2 IV sweep 92 3.4.2.3 Endurance test 94 3.5 Conclusion of chapter 3 101 Chapter 4 Improvement of Ag/HfSnO2/Pt RRAM 102 4.1 Introduction 102 4.2 Experimental procedure 103 4.3 Result and discussion 105 4.3.1 TEM analysis 105 4.3.2 Forming process 106 4.3.3 IV curve 107 4.3.4 Endurance Test 107 4.3.5 Retention Test 111 Chapter 5 Conclusions and Future Work 112 5.1 Conclusions 112 5.2 Future Work 112 References 114

    [1]Furqan Zahoor, Tun Zainal Azni Zulkifli and Farooq Ahmad Khanday, “Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications.” Nanoscale Res. Lett., 15, pp. 90, 2020.
    [2]H.-S. Philip Wong, Fellow IEEE, Heng-Yuan Lee, Shimeng Yu, Student Member IEEE, Yu-Sheng Chen, Yi Wu, Pang-Shiu Chen, Byoungil Lee, Frederick T. Chen, and Ming-Jinn Tsai, “Metal–Oxide RRAM.” Proc. IEEE, 100(6), pp. 1954¬–1970, Jun. 2012.
    [3]張鼎張, 施志承, 陳柏勳, “次世代電阻式記憶體發展,” 自然科學簡訊, 31(1), pp. 6¬–14, Feb. 2018.
    [4]Tsung-Ling Tsai, Hsiang-Yu Chang, Fa-Shen Jiang, and Tseung-Yuen Tseng, “Impact of Post-Oxide Deposition Annealing on Resistive Switching in HfO2-Based Oxide RRAM and Conductive-Bridge RAM Devices.” IEEE Electron Device Lett., 36(11), pp. 1146¬–1148, Nov. 2015.
    [5]Shuai He,Aize Hao, Ni Qin and Dinghua Bao, “Narrowing the band gap to enhance the resistive switching properties of Pr3+-doped ZnO thin films by Cd-ion doping.” RSC Adv., 7, pp. 38757¬–38764, 2017.
    [6]Marie C. Cheynet, Simone Pokrant, Frans D. Tichelaar and Jean-Luc Rouvière, “Crystal structure and band gap determination of HfO2 thin films.” J. Appl. Phys., 101, pp. 054101-1¬– 054101-8, Mar. 2007.
    [7]Y. M. Sun,1 C. Song, J. Yin, L. L. Qiao, R. Wang, Z. Y. Wang, X. Z. Chen, S. Q. Yin, M. S. Saleem, H. Q. Wu, F. Zeng and F. Pan, “Modulating metallic conductive filaments via bilayer oxides in resistive switching memory.” Appl. Phys. Lett., 114, pp. 193502-1¬–193502-5, May 2019.
    [8]Xu Huang, Kang'an Jiang, Yiru Niu, Renzhi Wang, Diyuan Zheng, Anhua Dong, Xinyuan Dong, Chunlian Mei, Jing Lu, Shuai Liu, Zhikai Gan, Ni Zhong, and Hui Wang, “Configurable ultra-low operating voltage resistive switching between bipolar and threshold behaviors for Ag/TaOx/Pt structures.” Appl. Phys. Lett., 113, pp. 112103-1¬–112103-5, Sep. 2018.
    [9]Yu Li, Shibing Long, Qi Liu, Hangbing Lv, and Ming Liu, “Resistive Switching Performance Improvement via Modulating Nanoscale Conductive Filament, Involving the Application of Two-Dimensional Layered Materials.” small, 13, pp. 1604306, Apr. 2017.
    [10]Yu-Rim Jeon, Yawar Abbas, Andrey Sergeevich Sokolov, Sohyeon Kim, Boncheol Ku, and Changhwan Choi, “Study of in Situ Silver Migration in Amorphous Boron Nitride CBRAM Device.” ACS Appl. Mater. Interfaces, 11, pp. 23329−23336, Jun. 2019.
    [11]Yiming Sun, Cheng Song, Jun Yin, Xianzhe Chen, Qin Wan, Fei Zeng, and Feng Pan, “Guiding the Growth of a Conductive Filament by Nanoindentation To Improve Resistive Switching.” ACS Appl. Mater. Interfaces, 9, pp. 34064−34070, Sep. 2017.
    [12]Haitao Sun, Hangbing Lv, Qi Liu, Shibing Long, Ming Wang, Hongwei Xie, Xiaoyu Liu, Xiaoyi Yang, Jiebin Niu, and Ming Liu, “Overcoming the Dilemma Between RESET Current and Data Retention of RRAM by Lateral Dissolution of Conducting Filament.” IEEE Electron Device Lett., 34(7), pp. 873−875, Jul. 2013.
    [13]Xing Wu, Sen Mei, Michel Bosman, Nagarajan Raghavan, Xixiang Zhang, Dongkyu Cha, Kun Li, and Kin Leong Pey, “Evolution of Filament Formation in Ni/HfO2/SiOx/Si-Based RRAM Devices.” Adv. Electron. Mater., 1, pp. 1500130, Oct. 2015.
    [14]Dayanand Kumar, Rakesh Aluguri, Umesh Chand and Tseung-Yuen Tseng, “Conductive bridge random access memory characteristics of SiCN based transparent device due to indium diffusion.” Nanotechnology, 29, pp. 125202, Feb. 2018.
    [15]Zhaoliang Liao, Peng Gao, Xuedong Bai, Dongmin Chen, and Jiandi Zhang, “Evidence for electric-field-driven migration and diffusion of oxygen vacancies in Pr0.7Ca0.3MnO3.” J. Appl. Phys., 111, pp. 114506-1−114506-5, Jun. 2012.
    [16]Li Zhang, Zhong Xu, Jia Han, Lei Liu, Cong Ye, Yi Zhou, Wen Xiong, Yanxin Liu, Gang He, “Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment.” J. Mater. Sci. Technol., 49, pp. 1−6, Feb. 2020.
    [17]Qi Wang, Yaomi Itoh, Tohru Tsuruoka, Masakazu Aono, and Tsuyoshi Hasegawa, “Ultra-Low Voltage and Ultra-Low Power Consumption Nonvolatile Operation of a Three-Terminal Atomic Switch.” Adv. Mater., 27, pp. 6029–6033, Aug. 2015.
    [18]Qi Wang, Yaomi Itoh, Tsuyoshi Hasegawa, Tohru Tsuruoka, Shu Yamaguchi, Satoshi Watanabe, Toshiro Hiramoto, and Masakazu Aono, “Nonvolatile three-terminal operation based on oxygen vacancy drift in a Pt/Ta2O5-x/Pt, Pt structure.” Appl. Phys. Lett., 102, pp. 233508-1–233508-5, Jun. 2013.
    [19]Tsuyoshi Hasegawa, Kazuya Terabe, Tohru Tsuruoka, and Masakazu Aono, “Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von-Neumann Computers.” Adv. Mater., 24, pp. 252–267, 2012.
    [20]Tsuyoshi Hasegawa, Yaomi Itoh, Hirofumi Tanaka, Takami Hino, Tohru Tsuruoka, Kazuya Terabe, Hisao Miyazaki, Kazuhito Tsukagoshi, Takuji Ogawa, Shu Yamaguchi, and Masakazu Aono, “Volatile/Nonvolatile Dual-Functional Atom Transistor.” Appl. Phys. Express, 4, pp. 015204-1–015204-3, 2011.
    [21]Qi Wang, Yaomi Itoh, Tohru Tsuruoka, Masakazu Aono, Deyan He, Tsuyoshi Hasegawa, “Oxygen vacancy drift controlled three-terminal ReRAM with a reduction in operating gate bias and gate leakage current.” Solid State Ion., 328, pp. 30–34, Nov. 2018.
    [22]S. Puthen Thermadam, S.K. Bhagat, T.L. Alford, Y. Sakaguchi, M.N. Kozicki, M. Mitkova, “Influence of Cu diffusion conditions on the switching of Cu–SiO2-based resistive memory devices.” Thin Solid Films, 518, pp. 3293–3298, 2010.
    [23]Yiyang Li, Elliot J. Fuller, Joshua D. Sugar, Sangmin Yoo, David S. Ashby,
    Christopher H. Bennett, Robert D. Horton, Michael S. Bartsch, Matthew J. Marinella, Wei D. Lu, and A. Alec Talin, “Filament-Free Bulk Resistive Memory Enables Deterministic Analogue Switching.” Adv. Mater., 32, pp. 2003984, Sep. 2020.
    [24]Fang-Yuan Yuan, Ning Deng, Chih-Cheng Shih, Yi-Ting Tseng, Ting- Chang Chang, Kuan-Chang Chang, Ming-Hui Wang, Wen-Chung Chen, Hao-Xuan Zheng, Huaqiang Wu, He Qian, and Simon M. Sze, “Conduction Mechanism and Improved Endurance in HfO2-Based RRAM with Nitridation Treatment.” Nanoscale Res. Lett., 12, pp. 574, 2017.
    [25]Shi-Jie Li , Bo-Yi Dong, Biao Wang, Yi Li , Hua-Jun Sun, Yu-Hui He, Nuo Xu , and Xiang-Shui Miao, “Alleviating Conductance Nonlinearity via Pulse Shape Designs in TaOx Memristive Synapses.” IEEE Trans. Electron Devices, 66(1), pp. 810–813, Jan. 2019.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE