簡易檢索 / 詳目顯示

研究生: 鄭丞峰
Jheng, Cheng-Fong
論文名稱: 兩種台灣原生種蝴蝶蘭(台灣阿嬤蝴蝶蘭與姬蝴蝶蘭)葉綠體基因體之比較分析
Comparative chloroplast genomic study between two native species of Taiwan moth orchid, P. aphrodite and P. equestris
指導教授: 張清俊
Chang, Ching-Chung
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 129
中文關鍵詞: 葉綠體基因體單核苷酸多型性插入/缺失變異
外文關鍵詞: chloroplast genome, SNP, InDel
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣原生種姬蝴蝶蘭的葉綠體基因體的完整序列為148,959 bp。其結構含有一對反向重複序列 ( IRs; 25,846 bp ),將整個基因體分成一個大單複本區( LSC;85,967 bp )及一個小單複本區( SSC;11,300 bp )。姬蝴蝶蘭的葉綠體基因體含有109種基因,包含75個蛋白質基因、4個RNA基因、30個tRNA基因以及21個可能的ORF(≧225 bp )。其中17個基因含有插入子,包含6個 tRNA 及 11個蛋白質編碼基因,而clpP、rps12 及 ycf3更含有2個插入子。將姬蝴蝶蘭、台灣白花蝴蝶蘭、及文心蘭的葉綠體基因體做比較分析,發現無論在基因組成、AT含量、ndh基因與ycf1的插入/缺失分佈及邊界變異上,台灣白花蝴蝶蘭與姬蝴蝶蘭極為相近,而蝴蝶蘭與文心蘭間則有較大差異。三種蘭科植物在ndh基因及ycf1基因都有程度不一的序列缺失及基因遺失現象,台灣白花蝴蝶蘭遺失了ndhA, F 和H基因; 姬蝴蝶蘭則遺失了ndhA、E、F 和H基因。而台灣白花蝴蝶蘭及姬蝴蝶蘭在ndhE、G及I有較嚴重的序列缺失;文心蘭則遺失ndhF及K基因且在ndhB、D、J及ycf1有較嚴重的序列缺失。三種蘭科在LSC/IR邊界變異不大;然而,在SSC/IR 邊界變異較大。此外,將兩種原生種蝴蝶蘭間的葉綠體基因組做多型性的比較分析,結果顯示在IR區域都有較低的單核苷酸多型性( SNP )及插入/缺失變異( InDel )。另外,兩種台灣原生種蝴蝶蘭基因間,與光合作用電子傳遞鏈功能相關的基因在演化上較具保留性;而與基因表現功能有關的基因,則歧異度較大。

    The complete chloroplast genome of P. equestris is 148,959 bp. A pair of inverted repeat (IRs; 25,846 bp) divides the genome into a large single copy region (LSC; 85,967 bp) and a small single copy region (SSC; 11,300 bp). There are 109 genes present in the chloroplast genome of P. equestris including 75 protein coding genes, 4 RNA genes and 30 tRNA genes. In addition, 21 putative ORF were identified with a threshold of 225 bp. Seventeen genes contain introns, including 6 tRNA and 11 protein coding genes, and clpP, rps12 and ycf3 have two introns. Comparative chloroplast genomic study among three species of orchid (P. equestris; P. aphrodite and Oncidium spp.) reveal that gene and AT content, the InDel of ndh and ycf1 genes as well as the variation of IR junction are more conserved between two Taiwan moth orchid than that of between Taiwan moth orchid and Oncidium spp. Lost of ndhA, H and F genes, and lost of ndhA, H, E and F genes were found in P. aphrodite and P. equestris, respectively, but lost of ndhF and ndhK was observed in Oncidium spp. In terms of the InDel in ndh and ycf1 genes among three species of orchid, serious truncation of ndhE, G and I were observed in P. equestris and P. aphrodite, in contrast, serious deletion of ndhB, D, J and ycf1 were found in Oncidium spp. There is no significant variation in LSC/IR border region among three species of orchid, in contrast, significant variation were observed in SSC/IR border region. Comparative chloroplast genomes between two Taiwan moth orchids also reveal lower rate of single nucleotide polymorphism (SNP) and insertion/deletion (InDel) in IR regions. In addition, the genes coding for photosynthetic apparatus are evolutionarily conserved and genes coding for genetic system are evolutionarily more divergent.

    目錄 第一章、前言 1 第二章、文獻探討 2 1. 定序完成的葉綠體基因體 2 2. 葉綠體基因體的結構特徵及大小變異 3 2.1葉綠體基因體的邊界變異 3 2.2葉綠體基因體的結構重組 4 3. 葉綠體基因體的基因組成 4 4. 葉綠體基因體遺傳特性 5 5. RNA編輯 (RNA editing) 6 6. 不同葉綠體基因體結構的演化速率 7 7. 插入/缺失變異( insertion/deletion;InDel )的演化特性 7 8. 蝴蝶蘭的分類、分佈及命名 9 9. 高等植物演化 10 10. 基因體的定序技術 10 第三章、材料與方法 13 1. 實驗材料 13 2. 實驗方法 13 2.1大腸桿菌( TOP 10 )的轉型(transformation) 13 2.2 以Dig標記探針進行DNA狹縫雜合反應來偵測目標基因的 存在 15 2.3 純化小規模培養液的BAC DNA 18 2.4 使用脈衝電泳鑑定姬蝴蝶蘭BAC DNA的插入片段大小 19 2.5 葉綠體基因體之篩選及定序 20 2.6 葉綠體基因體序列之排列組合 21 2.7 葉綠體基因輿圖的繪製及註解 21 2.8 葉綠體基因體的分析 22 2.8.1 AT含量之計算 22 2.8.2 密碼子使用頻率( Codon usage ) 23 2.8.3 蝴蝶蘭葉綠體RNA 編輯位的預測 23 2.8.4 核酸多型性之分析 24 2.8.4.1 插入/缺失變異圖譜之繪製 24 2.8.5 Ka/Ks值判斷演化天擇傾向 25 2.9 姬蝴蝶蘭BAC DNA之插入片段邊界之界定 25 第四章、結果 26 1. 含有姬蝴蝶蘭葉綠體基因的BAC clones之來源 26 2. 篩選及分析含姬蝴蝶蘭葉綠體基因之BAC clones 26 3. 姬蝴蝶蘭葉綠體基因體之定序 27 4. 姬蝴蝶蘭葉綠體基因體的分析 28 5. 蝴蝶蘭葉綠體RNA 編輯位的預測 32 6. 原生種蝴蝶蘭葉綠體間之基因多型性分析 33 7. 原生種蝴蝶蘭葉綠體基因插入子(intron)的分析 35 8. 原生種蝴蝶蘭葉綠體基因間隙( intergenic spacer )的多型性分析 37 9. ndh基因的多型性分析 40 10. 台灣白花蝴蝶蘭、姬蝴蝶蘭、文心蘭及菸草間ycf1基因的插入/ 缺失變異. 44 11. 台灣白花蝴蝶蘭與姬蝴蝶蘭間ycf1基因及ndh基因的核酸變異 比較 45 12. 台灣白花蝴蝶蘭與姬蝴蝶蘭間不同編碼基因的轉換及顛換 45 13. 台灣白花蝴蝶蘭、姬蝴蝶蘭與文心蘭的葉綠體基因體之邊界變 異 45 14. 蝴蝶蘭葉綠體基因體的蛋白質編碼基因synonymous (Ks) 和 nonsynonymous (Ka)取代率分析 47 15. 姬蝴蝶蘭葉綠體BAC clones的插入片段之邊界位置 47 第五章、討論 50 1. 原生種蝴蝶蘭葉綠體基因體的特性 50 2. 葉綠體基因體序列中核酸的轉換(Ts)與顛換(Tv) 51 3. 葉綠體基因體的插入與缺失 52 4. 葉綠體基因體的邊界變異 54 5. 葉綠體基因體的應用 54 第六章、參考文獻 56 圖目錄 圖一、姬蝴蝶蘭的Contigs對應至白花蝴蝶蘭葉綠體基因體 63 圖二、狹縫雜合實驗篩選姬蝴蝶蘭葉綠體BAC DNA,所使用的基因探 針,其散佈在台灣白花蝴蝶蘭葉綠體基因體中的位置圖 64 圖三、姬蝴蝶蘭葉綠體BAC DNA 進行狹縫雜合的結果 65 圖四、利用Pulsed Field Gel Electrophoresis 來決定BAC DNA 的大小 66 圖五、姬蝴蝶蘭(P. equestris)葉綠體的基因體圖譜 67 圖六、各密碼子的使用頻率(Codon usage) 69 圖七、台灣白花蝴蝶蘭與姬蝴蝶蘭間各基因間序列的Transition (Ts)及 Transversion (Tv)的數目 70 圖八、台灣白花蝴蝶蘭與姬蝴蝶蘭間編碼區的12種SNP型式 71 圖九、台灣白花蝴蝶蘭與姬蝴蝶蘭間各基因插入子的Transition (Ts)及 Transversion (Tv)取代數目 72 圖十、台灣阿嬤蝴蝶蘭與姬蝴蝶蘭間各基因插入子的Transition (Ts)及 Transversion (Tv)取代率 73 圖十一、台灣白花蝴蝶蘭與姬蝴蝶蘭間各基因插入子的12種SNP型式 74 圖十二、台灣白花蝴蝶蘭與姬蝴蝶蘭間各基因間隙序列的Transition (Ts) 及Transversion (Tv)之數目 75 圖十三、台灣阿嬤蝴蝶蘭與姬蝴蝶蘭間各基因間隙序列的Transition (Ts) 及Transversion (Tv)之頻率 76 圖十四、台灣白花蝴蝶蘭與姬蝴蝶蘭間各基因間隙片段的12種SNP型 式圖 77 圖十五、台灣白花蝴蝶蘭與姬蝴蝶蘭間ycf1及ndh 基因間的12種SNP 型式 78 圖十六、台灣白花蝴蝶蘭、姬蝴蝶蘭及文心蘭間,其ndh 基因的插入/ 缺失( InDel )圖譜 79 圖十七、菸草、台灣白花蝴蝶蘭、姬蝴蝶蘭及文心蘭間,ycf1的InDel 之情況 81 圖十八、台灣白花蝴蝶蘭、姬蝴蝶蘭及文心蘭的邊界變異之比較 83 圖十九、台灣白花蝴蝶蘭與姬蝴蝶蘭間蛋白質編碼基因的同義取代率 ( Ks )及非同義取代率之比較 ( Ka ) 85 表目錄 表一、姬蝴蝶蘭葉綠體BAC DNA間,狹縫雜合訊號整理表 86 表二、PFGE電泳所使用的marker 的片段大小及在凝膠( 1% )相對應移 動距離參數 87 表三、姬蝴蝶蘭葉綠體中所含有的基因 89 表四、台灣白花蝴蝶蘭、姬蝴蝶蘭及文心蘭的葉綠體基因體中,不同結 構區域的大小及AT含量 90 表五、在台灣白花蝴蝶蘭與姬蝴蝶蘭葉綠體基因體中,不同基因種類、 插入子及基因間隙片段的大小及AT含量 91 表六、台灣白花蝴蝶蘭與姬蝴蝶蘭葉綠體基因體的codon usage之分析 與比較 92 表七、台灣白花蝴蝶蘭與姬蝴蝶蘭的葉綠體可能RNA編輯的位置之比 較 93 表八、台灣白花蝴蝶蘭與姬蝴蝶蘭葉綠體RNA編輯的實驗及 CURE預 測位之統計 98 表九、台灣白花蝴蝶蘭與姬蝴蝶蘭的葉綠體RNA編輯預測位依照不同 密碼子編輯位分類整理及統計 100 表十、姬蝴蝶蘭葉綠體RNA編輯預測位依照胺基酸變化分類整理及統 計 102 表十一、台灣白花蝴蝶蘭與姬蝴蝶蘭間共同蛋白質編碼基因之Transition 及Transversion取代數目 103 表十二、不同編碼基因的轉換及顛換之數目、頻率及比值 104 表十三、台灣白花蝴蝶蘭與姬蝴蝶蘭間相同蛋白質編碼基因之不同鹼基 取代型式 105 表十四、台灣白花蝴蝶蘭與姬蝴蝶蘭間具有InDel的基因 106 表十五、姬蝴蝶蘭與台灣白花蝴蝶蘭葉綠體基因體中,含有插入子的基 因,及其表現子與插入子的長度之比較 107 表十六、台灣白花蝴蝶蘭與姬蝴蝶蘭間葉綠體基因體中基因插入子的多 型性 108 表十七、台灣白花蝴蝶蘭與姬蝴蝶蘭間葉綠體基因體中,基因插入子之 Transition及Transversion取代數目及比率 110 表十八、台灣白花蝴蝶蘭與姬蝴蝶蘭的葉綠體基因體中,基因插入子之 不同鹼基取代型式的比較 111 表十九、台灣白花蝴蝶蘭與姬蝴蝶蘭的葉綠體基因體中,基因插入子之 InDel數目及長度列表 112 表二十、台灣白花蝴蝶蘭與姬蝴蝶蘭的葉綠體基因體中,基因間隙序列 的多型性分析 113 表二十一、台灣白花蝴蝶蘭與姬蝴蝶蘭的葉綠體基因體中,基因間隙片 段之不同鹼基取代型式 116 表二十二、ndh基因及ycf1在台灣白花蝴蝶蘭與姬蝴蝶蘭間的多型 117 表二十三、台灣白花蝴蝶蘭與姬蝴蝶蘭的葉綠體基因體中,ycf1及ndh 基因之不同鹼基取代型式 119 表二十四、台灣白花蝴蝶蘭與姬蝴蝶蘭的葉綠體基因體中,各類型基因 之不同鹼基取代型式 120 表二十五、在台灣白花蝴蝶蘭與姬蝴蝶蘭間,葉綠體基因體中的ndh基 因,其InDel的情況 121 表二十六、BAC clones其末端序列blast之結果 122 附表目錄 附表一、本研究填補姬蝴蝶蘭不同contigs間的Gap所用到的引子 127 附表二、本研究製作狹縫雜合反應探針所用到的引子 128

    邢少辰. (2008). 葉綠體基因組研究進展. 生物化學與生物物理進展 35: 21-28

    吳錦勳. (2007). 荷蘭五年搶下蝴蝶蘭皇冠. 商業周刊 第1026期.

    林咸嘉. (2005). 蝴蝶蘭葉綠體基因體之分析. 國立成功大學生物科技所碩士論文.

    唐萍、王強及陳建群. (2008). 茄科植物葉綠體基因組插入、缺失和核苷酸替代的發生方式及影響. 遺傳 30: 1506-1512.

    曾文宏. (2007). 蝴蝶蘭葉綠體基因RNA編輯之分析. 國立成功大學生物科技所碩士論文.

    Anderson, S. (1981) Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Research 9: 3015–3027.

    Bentley, D.R. (2006) Whole-genome re-sequencing. Current Opinion in Genetics & Development 16: 545-552.

    Bock, R. (2000) Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing. Biochimie 82: 549-557.

    Britten, R.J., Rowen, L., Williams, J. and Cameron, R.A. (2003) Majority of divergence between closely related DNA samples is due to InDels. Proceedings of the National Academy of Sciences USA 100: 4661–4665.

    Burrows, P.A., Sazanov, L.A., Svab, Z., Maliga, P. and Nixon, P.J. (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO Journal 17: 868-876.

    Chang, C.C., Lin, H.C., Lin, I.P., Chow, T.Y., Chen, H.H., Chen, W.H., Cheng, C.H., Lin, C.Y., Liu, S.M., Chang, C.C. and Chaw, S.M. (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): Comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Molecular Biology and Evolution 23: 279-291.

    Chang, S.B., Chen, W.H., Chen, H.H., Fu, Y.M. and Lin, Y.S. (2000) RFLP and inheritance patterns of chloroplast DNA in intergeneric hybrids of Phalaenopsis and Doritis. Botanical Bulletin of Academia Sinica 41: 219-223.

    Collins, D.W., Jukes, T.H. (1994) Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics 20: 386-396.

    Corneille, S., Lutz, K. and Maliga, P. (2000) Conservation of RNA editing between rice and maize plastids: are most editing events dispensable? Molecular Genetics and Genomics 264: 419-424.

    Corriveau, J.L. and Coleman, A.W. (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. American Journal of Botany 75: 1443-1458.

    Cosner, M.E., Raubeson, L.A. and Jansen, R.K. (2004) Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evolutionary Biology 4: 27.

    Edwards, A., Caskey, T. (1991). Closure strategies for random DNA sequencing. Methods 3: 41-47.

    Gott, J.M., Emeson, R.B. (2000) Functions and mechanisms of RNA editing. Annual Review of Genetics. 34: 499-531.
    Guisinger, M.M., Kuehl, J.V., Boore, J.L. and Jansen, R.K. (2008) Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions. Proceedings of the National Academy of Sciences USA 105: 18424–18429.

    Halter, C.P., Peeters, N.M. and Hanson, M.R. (2004) RNA editing in ribosome-less plastids of iojap maize. Current Genetics 45: 331-337.

    Hamilton, M.B., Braverman, J.M. and Soria-Hernanz, D.F. (2003) Patterns and relative rates of nucleotide and insertion/deletion evolution at six chloroplast intergenic regions in New World species of the Lecythidaceae. Molecular Biology and Evolution 20: 1710-1721.

    Hermann, R.G., Oelm¨uller, R., Bichler, J., Schneiderbauer, A., Steppuhn, J., Wedel, N., Tyagi, A.K. and Westhoff, P. (1991) The thylakoid membrane of higher plants: genes, their expression and interaction. Plant Molecular Biology 2, Plenum Press, New York, pp. 411-427.

    Hoch, B., Maier, R.M., Appel, K., Igloi, G.L. and Kossel, H. (1991) Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353: 178-180.

    Ingvarsson, P.K., Ribstein, S. and Taylor, D.R. (2003) Molecular evolution of insertions and deletions in the chloroplast genome of Silene. Molecular Biology and Evolution 20: 1737-1740.

    Tang, J., Xia, H., Cao, M., Zhang, X., Zeng, W., Hu, S., Tong, W., Wang, J., Wang, J., Yu, J., Yang, H. and Zhu, L. (2004) A comparison of rice chloroplast genomes. Plant Physiology 135: 412-420.

    Kanno, A. and Hirai, A. (1993) A transcription map of the chloroplast genome from rice (Oryza sativa). Current Genetics 23: 166-174.

    Karcher D., Bock, R. (2002) Temperature sensitivity of RNA editing and intron splicing reactions in the plastid ndhB transcript. Current Genetics 41: 48-52.

    Kasianowicz, J.J., Brandin, E., Branton, D. and Deamer, D.W. (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences USA 93: 13770–13773.

    Kato, T., Kaneko, T., Sato, S., Nakamura, Y. and Tabata, S. (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicas. DNA Research 7: 323–330.

    Kelchner, S.A. (2000) The evolution of non-coding chloroplast DNA and its application in plant systematic. Annals of the Missouri Botanical Garden 87: 499-527.

    Kelchner, S.A. and Wendel, J. F. (1996) Hairpins create minute inversions in non-coding regions of chloroplast DNA. Current Genetics 30: 259-262.

    Kim, K.J. and Lee, H.L. (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Research 11: 247-261.

    Kugita, M., Kaneko, A., Yamamoto, Y., Takeya, Y., Matsumoto, T. and Yoshinaga, K. (2003) The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Research 31: 716-721.

    Levinson, G. and Gutman, G. A. (1987) Slipped-strand misparing: a major mechanism for DNA sequence evolution. Molecular Biology and Evolution 4: 203-221.

    Lilly, J.W., Havey, M.J., Jackson, S.A. and Jiang, J. (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13: 245-254.

    Liu, Y., Zhang, Q., Hu, Y. and Sodmergen. (2004) Heterogeneous pollen in Chlorophytum comosum, a species with a unique mode of plastid inheritance intermediate between the maternal and biparental modes. Plant Physiology 135: 193-200.
    Logacheva, M.D., Samigullin, T.H., Dhingra, A., Penin, A.A.(2008) Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale -a wild ancestor of cultivated buckwheat. BMC Plant Biology 8: 59.

    Maier, R.M., Neckermann, K., Igloi, G.L. and Kossel, H. (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing, Journal of Molecular Biology 251: 614-628.

    Maul, J.E., Lilly, J.W., Cui, L., dePamphilis, C.W., Miller, W., Harris, E.H. and Stern, D.B. (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14: 2659-2679.

    Mogensen, H.L. (1996). The hows and whys of cytoplasmic inheritance in seed plants. American Journal of Botany 83: 383-404.

    Morton, B.R., Bi, I.V., McMullen, M.D. and Gaut, B.S. (2006) Variation in mutation dynamics across the maize genome as a function of regional and flanking base composition. Genetics 172: 569−577.

    Palmer, J. D. (1991) Plastid chromosomes: structure and evolution. In: Vasil, I. K., and Bogorad, L. (eds) Cell Culture and Somatic Cell Genetics in Plants, Vol. 7A, The Molecular Biology of Plastids, Academic Press, San Diego, pp. 5–53.

    Peeters N.M., Hanson M.R. (2002) Transcript abundance supercedes editing efficiency as a factor in developmental variation of chloroplast gene expression. RNA 8: 497-511.

    Perry, A.S., Brennan, S., Murphy, D.J., Kavanagh, T.A. and Wolfe, K.H. (2002) Evolutionary re-organisation of a large operon in adzuki bean chloroplast DNA caused by inverted repeat movement. DNA Research 9: 157-162.

    Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M. and Nyrén, P. (1996) Real-time DNA sequencing using detection of pyrophosphate release. Analytical Biochemistry 242: 84-89.

    Shahid Masood, M., Nishikawa, T., Fukuoka, S., Njenga, P.K., Tsudzuki, T. and Kadowaki, K. (2004). The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 340:133-139.

    Shikanai, T. (2007) Cyclic electron transport around photosystem I: genetic approaches. Annual Review of Plant Biology 58: 199-217.

    Shinozaki, K., Hayashida, N. and Sugiura, M. (1988) Nicotiana chloroplast genes for components of the photosynthetic apparatus. Photosynthesis Research 18: 7-31.

    Simmons, M.P. and Ochoterena, H. (2000) Gaps and characters in sequence-based phylogenetic analysis. Systems Biology 42: 369-381.

    Sugiura, M. (1992) The chloroplast genome. Plant Molecular Biology 19: 149-168.

    Tangphatsornruang, S., Sangsrakru, D., Chanprasert, J., Uthaipaisanwong, P., Yoocha, T., Jomchai, N. and Tragoonrung, S. (2010). The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Research 17: 11-22.

    Tsudzuki J, Nakashima, K., Tsudzuki, T., Hiratsuka, J., Shibata, M., Wakasugi, T. and Sugiura, M. (1992) Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. Molecular and General Genetics 232: 206-214.

    Wolfe, K.H., Morden, C.W. and Palmer, J. D. (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proceedings of the National Academy of Sciences USA 89: 10648-10652.
    Wu, F.H., Chan, M.T., Liao, D.C., Hsu, C.T., Lee, Y.W., Daniell, H., Duvall, M.R. and Lin, C.S. (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biology 10: 68.

    Yamane, K., Yano, K. and Kawahara, T. ( 2006) Pattern and rate of InDels evolution inferred from whole chloroplast intergenic regions in sugarcane, maize and rice. DNA Research 13: 197-204.
    Yang, Z. and Yoder, A.D. (1999). Estimation of the transition/transversion rate bias and species sampling. Journal of Molecular Evolution 48: 274-283.

    Zhang, Q., Liy, Y., Sodmergen. (2003) Examination of cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant and Cell Physiology 44: 941-951.

    Zeng, W.H., Liao, S.C., Chang, C.C. (2007) Identification of RNA editing sites in chloroplast transcripts of Phalaenopsis aphrodite and comparative analysis with those of other seed plants. Plant and Cell Physiology 48: 362-368.

    下載圖示 校內:2015-09-14公開
    校外:2015-09-14公開
    QR CODE