簡易檢索 / 詳目顯示

研究生: 董憲宏
Tung, Hsien-Hung
論文名稱: 應用直交集成板(CLT)與竹木複合板(CLTB)進行非韌性RC建築物耐震補強研究
Research on Seismic Rertofit of Non-ductile RC Buildings Using Cross-Laminated Timber (CLT) and Bamboo-Wood (CLTB) Composite Panel
指導教授: 劉光晏
Liu, Kuang-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系碩士在職專班
Department of Civil Engineering (on the job class)
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 154
中文關鍵詞: 耐震評估補強直交集成板剪力牆非韌性構架
外文關鍵詞: Seismic assessment and reinforcement, Cross-Laminated Timber, shear walls, non-ductile frames
相關次數: 點閱:103下載:40
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討台灣國內老舊鋼筋混凝土建築物的耐震補強問題,由於這些建築物大多採用非韌性結構設計,使用非韌性配筋抵抗地震力,容易呈現受壓崩潰式破壞甚至於該樓層倒塌。以往的傳統式耐震補強工法對於一般民眾而言,易影響其居住建築物生活機能正常運作。因此,本研究採用國內生產的柳杉製成的直交集成板(Cross laminated timber, CLT)進行補強,這種工程木製品能有效提升非韌性建築物耐震能力。
    本研究由臺大實驗林和成大土木系首次合作,採用國產的CLT和竹木複合板(CLTB),取代傳統鋼筋混凝土(RC)剪力牆進行舊建築物的耐震補強。實驗試體包括四組非韌性鋼筋混凝土構架,其中一組為對照組,其餘三組分別採用CLT、CLTB、RC填充於構架內部作為剪力牆以進行耐震補強實驗。實驗結果顯示,非韌性構架之最大水平剪力為478 kN,最大層間位移角為3%,呈現典型撓剪破壞。採用RC牆補強之最大水平剪力為1299KN,最大層間位移角為1%,水平剪力強度可提升2倍,但變形能力剩50%。採用CLTB補強之最大水平剪力為1123 kN,為非韌性RC空構架2.35倍,且最大層間位移角達2.5%,滿足含牆結構2%變形要求。採用CLT補強之最大水平剪力為1046 kN、層間位移角高達4%,側力位移曲線之包絡線呈現良好的雙線性行為。因此,CLT牆、CLTB牆均可提供良好的強度與變形能力,提升既有老舊建築結構之耐震性能。

    This study investigates the seismic reinforcement of older reinforced concrete buildings in Taiwan. As many of these buildings were designed with non-ductile structures and non-ductile reinforcements to resist seismic forces, they are prone to compressive failure or even collapse during earthquakes. Traditional seismic reinforcement methods can often interfere with the everyday functions of the building, making them unsuitable for residential purposes. To address this issue, the study uses domestically produced larch cross-laminated timber (CLT) as a reinforcement material, which can effectively improve the seismic resistance of non-ductile structures.
    The experiment includes four groups of non-ductile reinforced concrete frames, with one control group and the other three groups reinforced using CLT, CLTB, and RC as shear walls. The experimental results show that the maximum horizontal shear force of the non-ductile frame is 478 kN, with a maximum inter-story drift angle of 3%, indicating typical flexural-shear failure. The maximum horizontal shear force of the RC-reinforced frame is 1299kN, with a maximum inter-story drift angle of 1%, which increases the horizontal shear strength by three times but leaves 33% of the deformation capacity. The maximum horizontal shear force of the CLTB frame is 1123 kN, which is 2.35 times that of the non-ductile RC frame, with a maximum inter-story drift angle of 2.5%, satisfying the 2% deformation requirement for a building with walls. The maximum horizontal shear force of the CLT frame is 1046 kN, with a high inter-story drift angle of 4%, showing good bilinear behavior in lateral force displacement curves.

    摘要I 表目錄IX 圖目錄XI 第1章 緒論 1 1-1 前言 1 1-2 研究背景 2 第2章 文獻回顧 4 2-1 建築構架RC牆耐震性能研究 4 2-2 鋼筋混凝土牆之側力位移曲線 4 2-3 建築構架運用CLL系統研究 5 2-3-1 葉民權等人(2019)探討自攻螺絲對於鋁合金連結件與直交集成板的接合剪斷抵抗性能之影響 5 2-3-2 R. Brandner等人(2015)對於CLT現況評估未來十年生產量將增加 5 2-3-3 Pouyan Zarnani等人(2015)提供評估CLT板橫向承載力方法 6 2-3-4 S.Pei等人(2016) 介紹CLT作為側向抗力系統的研究發展和具有韌性的建築系統的需求 7 2-3-5 G.Tamagnone等人(2017)使用非線性方法設計CLT金屬連接器 7 2-3-6 Angelo Aloisio等人(2022)分析CLT橫向彈性變形的分析公式 8 2-3-7 Yuri De Santis等人(2022)評估木材塑化和CLT特性(幾何形狀、寬度、開口等)對中樞軸點位置影響 8 2-3-8 Daniele Casagrande等人(2021)提出用於分析CLT剪力牆替代連續二維或三維有限元素模型 10 2-3-9 Angelo Aloisio等人(2022)對運用摩擦阻尼器結合CLT提升RC結構耐震性能 10 2-3-10 Jianyang Xue等人(2021)對木構框架(GLT)用CLT剪力牆補強的橫向性能研究 11 2-3-11 E. Ruggeri等人(2022)研究垂直牆對C LT剪力牆橫向性能的影響 13 2-3-12 Ildiko Lukacs等人(2018)研究評估CLT承載能力與位移的技術 14 2-3-13 Gabriele Tamagnone等人(2020)探討雙面CLT板搖擺行為 16 2-3-14 Giuseppe D’Arenzo等人(2021)對CLT剪力牆採分段連接的行為 17 2-3-15 幅亮太等人(2016)提出了以CLT板作為剪力牆的新型抗震加固方法 18 第3章 構架試體實驗規劃 22 3-1 雙軸向試驗系統(BATS) 22 3-2 倒塌模擬測試平台 23 3-3 BNF基礎構架試體設計 24 3-4 CLT補強試體設計 26 3-4-1 CLT補強試體數值設計 30 3-5 CLTB補強試體設計 31 3-6 RCW剪力牆試體設計 31 3-7 試體製作與施工步驟 33 3-7-1 基礎構架試體施作 33 3-7-2 CLT及CLTB製作 37 3-7-3 補強構架試體施作 40 3-8 量測系統布置 42 3-8-1 內部量測系統 43 3-8-2 外部量測系統 44 3-9 測試步驟 47 第4章 實驗結果與分析比較 50 4-1 BNF基礎構架試體 51 4-1-1 BNF側向力-變位發展過程 51 4-1-2 BNF韌性比 52 4-2 CLT剪力牆補強試體 54 4-2-1 CLT側向力-變位發展過程 54 4-2-2 CLT韌性比 55 4-3 CLTB剪力牆補強試體 57 4-3-1 CLTB側向力-變位發展過程 57 4-3-2 CLTB降伏位移及極限位移 58 4-4 RCW剪力牆補強試體 60 4-4-1 RCW側向力-變位發展過程 60 4-4-2 RCW降伏位移及極限位移 61 4-5 裂縫發展與破壞模式 63 4-5-1 基礎構架試體 63 4-5-2 CLT剪力牆補強試體 64 4-5-3 CLTB剪力牆補強試體 65 4-5-4 RCW剪力牆補強試體 66 4-6 變形量測 106 4-6-1 應變計變形量測 106 4-6-2 邊界柱旋轉角量測 113 第5章 結論與建議 116 附錄A 123 附錄B 131

    [ 1 ]111年第40週內政統計通報(111年第2季底我國住宅總量突破900萬宅,10年增加100萬宅) (moi.gov.tw)
    [ 2 ]李宏仁,建築構架含RC牆之耐震性能研究-非結構牆及槽縫牆行為,內政部建築研究所委託研究報告,1998年。
    [ 3 ]翁樸文,鋼筋混凝土剪力牆分析擬技術手冊,國家地震工程研究中心,2021年。
    [ 4 ]幅亮太,北守顯久,森拓郎,福原武史,栗原嵩明,五十田博,CLT パネルを接着挿入したRC フレームの耐震補強効果に関する実験,日本建築学会構造系論文集,第81巻第726号,1299-1308,2016年
    [ 5 ]喜得利公司,喜得利植筋設計應用手冊,2022年。
    [ 6 ]葉民權,直交集成板金屬連結件接合之剪斷抵抗性能探討,台灣林業科學研究報告34(4),235-262,2019年。
    [ 7 ] ACI Committee 374, “Acceptance Ctriteria for Moment Frames Based on Structural Testing and Commentary”, American Concrete Institute, Farmington Hills, MI, 2005.
    [ 8 ]Angelo Aloisio, Francesco Boggian, Roberto Tomasi, Design of a novel Seismic retrofitting system for RC structures based on asymmetric friction connections and CLT panels, Engineering Structures 254 11380, 2022.
    [ 9 ]Angelo Aloisio, Francesco Boggian, Hakon Ostraat Savareid , Johan Bjorkedal ,Roberto Tomasi, Analysis and enhancement of the new Eurocode 5 formulations for the lateral elastic deformation of LTF and CLT walls, Structures 47, 1940-1956, 2022.
    [ 10 ]Ario Ceccotti, Carmen Sandhaas, Minoru Okabe, Motoi Yasumura, Chikahiro Minowa and Naohito Kawai, SOFIE project – 3D shaking table test on a seven-story full-scale cross-laminated timber building, Earthquake Engineering Structural Dynamics; 42:2003-2021, 2013.
    [ 11 ]Daniele Casagrande, Ghasan Doudak, Matteo Vettori, Proposal for an equivalent frame model for the analysis of multi-story monolithic CLT shear walls, Engineering Structures 245 112894, 2021.
    [ 12 ]E. Ruggeri, G. D’Arenzo, M. Fossetti, W. Seim, Investigating the effect of perpendicular walls on the lateral behavior of Cross-Laminated Timber shear walls, Structures 46, 1679-1695, 2022.
    [ 13 ]FEMA356, Prestandard and commentary for the seismic rehabilitation of buildings, 2000.
    [ 14 ]G. Tamagnone, G. Rinaldin, M. Fragiacomo, A novel method for non-linear design of CLT wall systems, Structures 167, 760-771, 2017.
    [ 15 ]Gabriele Tamagnone, Giovanni Rinaldin, and Massimo Fragiacomo, Influence of the Floor Diaphragm on the Rocking Behavior of CLT Walls, DOI: 10.1061/(ASCE)ST.1943-541X.0002546, 2020.
    [ 16 ]Giuseppe D’Arenzo, Sascha Schwendner, Werner Seim, The effect of the floor-to-wall interaction on the rocking stiffness of segmented CLT shear-walls, Structures 249, 113219, 2021.
    [ 17 ]Ildiko Lukacs, Anders Bjornfot, Roberto Tomasi, Strength and stiffness of cross-laminated timber (CLT) shear walls: State-of-the-art of analytical approaches, Structures 179, 136-147, 2018
    [ 18 ]Jianyang Xue, Guoqi Ren, Liangjie Qi, Chenwei Wu, Zhen Yuan, Experimental study on lateral performance of glued-laminated timber frame infilled with cross-laminated timber shear walls, Structures 239, 112354, 2021.
    [ 19 ]Matteo Izzi, Daniele Casagrande, Stefano Bezzi, Dag Pasca, Maurizio Follesa, Roberto Tomasi, Seismic behavior of Cross-Laminated Timber structures: A state-of-the-art review, 42-52, 2018.
    [ 20 ]Pouyan Zarnani, Pierre Quenneville, New design approach for controlling brittle failure modes of small-dowel-type connections in Cross-laminated Timber (CLT), Construction and Building Materials 100, 172-182, 2015.
    [ 21 ]R. Brandner, G. Flatscher, A. Ringhofer, G. Schickhofer, A. Thiel, Cross laminated timber (CLT): overview and development, Eur. J. Wood Prod 74, 331-351, 2016.
    [ 22 ]S. Pei, J. W. van de Lindt, M. Popovski, J. W. Berman, J. D. Dolan, J. Ricles, R. Sause, H. Blomgren, D. R. Rammer, Cross-Laminated Timber for Seismic Regions: Progress and Challenges for Research and Implementation, DOI:10.1061/(ASCE)ST.1943-541X.0001192, 2016.
    [ 23 ]Yuri De Santis, Angelo Aloisio, Martina Sciomenta, Massimo Fragiacomo, Capacity model of CLT walls with openings and timber plasticization, Engineering Structures 264 114411, 2022.
    [ 24 ]Weng, P. W., Li Y. A., Tu Y. S., and Hwang S. J. , "Prediction of the Lateral Load-Displacement Curves for Reinforced Concrete Squat Walls Failing in Shear," Journal of Structural Engineering, ASCE, Vol. 143, No. 10, DOI : 10.1061/(ASCE)ST.1943-541X.0001872, 2017.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE