| 研究生: |
蔡政育 Tsai, Cheng-Yu |
|---|---|
| 論文名稱: |
控制力矩陀螺儀致動自行車之輔助平衡控制 Balancing Assistance of the Bicycle with Control Moment Gyroscopes |
| 指導教授: |
何明字
Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 187 |
| 中文關鍵詞: | 自行車動態 、控制力矩陀螺儀 、輔助平衡系統 |
| 外文關鍵詞: | bicycle dynamic, control moment gyroscope, balancing assistance system |
| 相關次數: | 點閱:89 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自行車在不加以控制之下,是一個不穩定的系統,本論文旨在研究以控制力矩陀螺儀為致動器,設計及實現自行車之輔助平衡系統,用以增進騎乘的穩定性與安全性。控制力矩陀螺儀擁有較小的體積卻可產生較大力矩之優點,適合做為自行車輔助平衡力矩之提供來源。論文中先以 Euler-Lagrange的方法建立數學動態模型,接著使用Simscape建構系統動態模型,並加入所設計的輔助平衡控制器進行電腦模擬,評估控制系統的可行性。在實作的部分,本系統以數位訊號處理器做為控制核心並使用C語言撰寫輔助平衡控制器程式,以光學編碼器及慣性測量單元提供控制回授,實現以控制力矩陀螺儀為致動器之自行車輔助平衡系統。由模擬及實驗結果顯示,有加入輔助平衡系統之自行車比沒加入輔助平衡系統之自行車穩定性還要好。
A bicycle is an inherently unstable system without any control. The objective of this thesis is to design and implement a balancing assistance system for the bicycle with control moment gyroscopes. This system can improve stability and safety when a rider rides the bicycle. Control moment gyroscopes have the advantage of generating large torque with a compact size, and it is suitable as a source of balancing assistance moment for the bicycle. In this thesis, the Euler-Lagrange method is used to derive the dynamic model of the system. Simscape is used to simulate the designed control system. In the experiments, the control laws are implemented through a digital signal processor. Optical encoders and an inertial measurement unit are used to provide feedback signals. Simulation and experimental studies show that the bicycle with a balancing assistance system has better stability than the bicycle without a balancing assistance system.
[1] K. J. Astrom, R. E. Klein, and A. Lennartsson, “Bicycle Dynamics and Control: Adapted Bicycles for Education and Research,” IEEE Control Systems Magzine, Vol. 25, No. 4, pp. 26-47, Aug. 2005.
[2] 黃建琛,「控制力矩陀螺致動倒單擺系統之平衡控制」,國立成功大學工程科學系碩士論文,民國一○三年七月。
[3] 楊景文,「控制力矩陀螺致動倒單擺系統之平衡暨自轉控制」,國立成功大學工程科學系碩士論文,民國一○八年七月。
[4] D. J. Liska, “A Two-degree-of-freedom Control Moment Gyro for High-Accuracy Attitude Control,” Journal of Spacecraft and Rockets, Vol. 5, No.1, pp. 75-83, Jan. 1968.
[5] D. Brown and M. A. Peck, “Scissored Pair Control Moment Gyros: A Mechanical Constraint Saves Power,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, pp. 1823-1826, Nov. 2008.
[6] R. C. Hibbeler, Engineering Mechanics Dynamics, Prentice Hall, Upper Saddle River, NJ, 2009.
[7] LIT MOTORS網站 http://litmotors.com/c1/
[8] J. M. Gallaspy, Gyroscopic Stabilization of a Stationary Unmanned Bicycle, M.S. Thesis, Auburn University, 1999.
[9] N. Townsend, A. Murphy, and R. Shenoi, “A New Active Gyrostabiliser System for Ride Control of Marine Vehicles,” Ocean Engineering, Vol. 34, No. 11-12, pp. 1607-1617, Aug. 2007.
[10] M. Q. Dao and K. Z. Liu, “Gain-Scheduled Stabilization Control of a Unicycle Robot,” JSME International Journal, Vol. 48, No. 4, pp. 649-656, Dec. 2005.
[11] J. van de Loo, State Feedback Tracking of a Nonholonomic Control Moment Gyroscope, M.S. Thesis, Technische Universiteit Eindhoven, 2006.
[12] GyroGlove網站 http://gyrogear.co/gyroglove
[13] M. K. Muller and M. B. Popovic, “Shoulder Mounted Gyroscopic Prosthesis for Assisting Arm Amputees During Walking,” Proceedings of Dynamic Walking Conference, Jun. 2017.
[14] H. B. Pacejka, Tire and Vehicle Dynamics, 2nd ed., Elsevier, New York, 2006.
[15] V. Cossalter, Motorcycle Dynamics, Race Dynamics, Milwaukee, WI, 2002.
[16] N. H. Getz, Dynamic Inversion of Nonlinear Maps with Applications to Nonlinear Control and Robotics, Ph.D. Thesis, Univ. of California at Berkeley, 1995.
[17] A. M. Bloch, Nonholonomic Mechanics and Control, Springer Verlag, New York, 2003
[18] R. Ortega, A. Loria, P. J. Nicklasson, and H. S. Ramirez, Passivity-Based Control of Euler-Lagrange Systems Mechanical, Electrical and Electromechanical Applications, Springer-Verlag, London, 1998.
[19] L. Keo, Realization of an Unmanned Bicycle Robot With Balancer, Ph.D. Thesis, Tokyo Institute of Technology, 2010.
[20] S. H. żak, Systems and Control, Oxford Univeristy Press, New York, 2003.
[21] B. C. Kuo, Automatic Control Systems, John Wiley & Sons, Inc., New York, 2002.
[22] Simulink網站 https://www.mathworks.com/products/simulink.html?s_tid=hp_products_simulink
[23] Simscape網站 https://www.mathworks.com/products/simscape.html?s_tid=srchtitle
[24] M. V. Blundell, The Influence of Suspension and Tyre Modelling on Vehicle Handling Simulation, Ph.D. Thesis, Coventry University in collaboration with Rover Group and SP Tyres UK Ltd., 1997.
[25] R. N. Jazar, Vehicle Dynamics: Theory and Application, Springer, Boston, MA, 2009.
[26] J. F. A. den Brok, A SimMechnaics Motorcycle Tyre Model for Real Time Purposes, M.S. Thesis, Delft University, 2009.
[27] E. Kreyszig, H. Kreyszig, and E. Norminton, Advanced Engineering Mathematics, 10th ed., Wiley, Hoboken, NJ, 2011.
[28] S. Kasai, H. Kojima, and M. Satoh, “Spacecraft Attitude Maneuver using Two Single-Gimbal Control Moment Gyros,” Acta Astronautica, Vol. 84, No. 9, pp. 88-98, Mar. 2013.
[29] 楊文皓,「單輪機器人之穩定與路徑追隨控制」,國立成功大學工程科學系碩士論文,民國一○八年七月。
[30] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, 1st ed., Wiley-Interscience, New York, 1972.
校內:2025-12-31公開