| 研究生: |
徐偉華 Hsu, Wei-Hua |
|---|---|
| 論文名稱: |
雷射誘導石墨烯與MAPbI3鈣鈦礦複合材料之紙基紫外光感測器 Laser-Induced Graphene/MAPbI3 Perovskite Composites for Paper-Based UV Photodetectors |
| 指導教授: |
涂維珍
Tu, Wei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 雷射誘導石墨烯 、石墨烯 、鈣鈦礦 、紙基 、紫外光感測器 |
| 外文關鍵詞: | laser-induced graphene, perovskite, paper-based, photodetector |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來柔性電子元件發展迅速,同時在永續環保、環境友善等議題被 廣泛討論之際,能夠透過自然環境中源源不絕的天然碳源製備的雷射誘 導石墨烯成為了一個潛在選項,為可持續再生和低成本的電子元件創造了發展道路。
本論文中提出了在大氣環境條件下透過雷射直寫方式在纖維素濾紙上製備雷射誘導石墨烯之技術,雷射誘導石墨烯技術有精準控制能量、靈 活彈性的圖案化、多種基板皆可應用等優點。實驗選擇濾紙作為感測器的基板,製備的元件即具有可撓性之特色,後續再透過簡易的溶液沉積製程, 將具高光吸收特性的 MAPbI3 鈣鈦礦材料與石墨烯結合,提升元件整體的 光電特性。除此之外,實驗設計純石墨烯與石墨烯/MAPbI3 鈣鈦礦為光吸收層,將分析兩種不同結構光電感測器的機制與特性。
根據實驗結果證實透過雷射參數的最佳化所製備雷射誘導石墨烯具 有良好的導電性,並且在不添加鈣鈦礦材料的情況下所製備的元件展現 出對紫外光快速響應的能力。單純石墨烯光感測器在施加 5 V 偏壓、光功率密度 187.4 mW/cm2 下,元件可得到最高 16.3 mA/W 的光響應度。添 加 MAPbI3 鈣鈦礦材料後的複合材料元件,因鈣鈦礦的高吸收特性與石墨 烯快速的載子傳輸能力,除了在光吸收度有明顯提升外,材料之間存在的 有效光生電荷轉移、光閘效應,使元件具有更優異的光電特性。在施加 5V 偏壓、光功率密度 161.4 mW/cm2 下,光感測器最高的光響應度為 144.7mA/W,探測率為 5.64×108 Jones,最後也驗證了紙基柔性元件在彎曲 1000 次後仍具有優異的光感測能力。
本實驗成功製備了石墨烯與石墨烯/MAPbI3 鈣鈦礦兩種結構的紫外 光電感測器,兩者皆具有優異的光感測特性,並證實透過結合雷射誘導石 墨烯/ MAPbI3 鈣鈦礦材料能有效提升光電感測器的表現,在紙基可撓式 元件的應用上提供了未來發展綠能元件的可能性。
In this paper, a laser direct writing technique is proposed for the preparation of laser-induced graphene on cellulose filter paper under atmospheric conditions. The laser direct writing technique offers advantages such as precise control of laser energy, flexible patterning, and compatibility with various substrates. Due to the choice of filter paper as the substrate, the prepared photodetectors exhibit a great flexibility. Subsequently, a simple solution deposition process is used to combine the highly light-absorbing MAPbI3 perovskite material, enhancing the overall optoelectronic properties of the graphene/MAPbI3 perovskite UV photodetectors.
According to the experimental results, it was confirmed that the laser-induced graphene prepared through the optimization of laser parameters exhibited excellent conductivity. The device prepared without the addition of perovskite materials already demonstrated rapid response to ultraviolet light. For the graphene photodetector, the highest photoresponsivity was 16.3 mA/W can be obtained under a bias voltage of 5 V and power density of 187.4 mW/cm2. After adding MAPbI3 perovskite on the graphene film, due to the high absorption characteristics of perovskite, the fast carrier transport ability of graphene, the obvious improvement in light absorption, the effective photogenerated charge transfer and the photogating effect makes the graphene/MAPbI3 perovskite photodetectors have excellent optoelectronic properties. Under a bias voltage of 5 V and an optical power density of 161.4 mW/cm2, the highest photoresponsivity was 144.7 mA/W, with a detectivity of 5.64×108 Jones. Finally, it was also confirmed that the paper-based flexible device retained its light sensing capability even after undergoing 1000 bending cycles.
[1] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
[2] Sarma, S. D., Adam, S., Hwang, E. H., & Rossi, E. (2011). Electronic transport in two-dimensional graphene. Reviews of modern physics, 83(2), 407.
[3] Koppens, F. H. L., Mueller, T., Avouris, P., Ferrari, A. C., Vitiello, M. S., & Polini, M. (2014). Photodetectors based on graphene, other two- dimensional materials and hybrid systems. Nature nanotechnology, 9(10), 780-793.
[4] Senat, M. V., Deprest, J., Boulvain, M., Paupe, A., Winer, N., & Ville, Y. (2004). Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. New England Journal of Medicine, 351(2), 136-144.
[5] Hogan, N. J., Urban, A. S., Ayala-Orozco, C., Pimpinelli, A., Nordlander, P., & Halas, N. J. (2014). Nanoparticles heat through light localization. Nano letters, 14(8), 4640-4645.
[6] Lin,J.,Peng,Z.,Liu,Y.,Ruiz-Zepeda,F.,Ye,R.,Samuel,E.L.,...&Tour, J. M. (2014). Laser-induced porous graphene films from commercial polymers. Nature communications, 5(1), 5714.
[7] Singh, R., Suranagi, S. R., Yang, S. J., & Cho, K. (2018). Enhancing the power conversion efficiency of perovskite solar cells via the controlled growth of perovskite nanowires. Nano Energy, 51, 192-198.
[8] Deng, W., Zhang, X., Huang, L., Xu, X., Wang, L., Wang, J., ... & Jie, J. (2016). Aligned single‐crystalline perovskite microwire arrays for high‐ performance flexible image sensors with long‐term stability. Advanced Materials, 28(11), 2201-2208.
[9] Jin,Y.,Wang,Z.K.,Yuan,S.,Wang,Q.,Qin,C.,Wang,K.L.,...&Liao, L. S. (2020). Synergistic effect of dual ligands on stable blue quasi‐2D perovskite light‐emitting diodes. Advanced Functional Materials, 30(6), 1908339.
[10]Fang, H., Li, J., Ding, J., Sun, Y., Li, Q., Sun, J. L., ... & Yan, Q. (2017). An origami perovskite photodetector with spatial recognition ability. ACS applied materials & interfaces, 9(12), 10921-10928.
[11]Lee, Y., Kwon, J., Hwang, E., Ra, C. H., Yoo, W. J., Ahn, J. H., ... & Cho, J. H. (2015). High‐performance perovskite–graphene hybrid photodetector. Advanced materials, 27(1), 41-46.
[12]Zheng, L., Zhou, W., Ning, Z., Wang, G., Cheng, X., Hu, W., ... & Yu, Y. (2018). Ambipolar graphene–quantum dot phototransistors with CMOS compatibility. Advanced Optical Materials, 6(23), 1800985. [13]Novoselov, K. S. (2011). Nobel lecture: Graphene: Materials in the flatland. Reviews of modern physics, 83(3), 837.
[14]Geim, A. K. (2011). Nobel Lecture: Random walk to graphene. Reviews of Modern Physics, 83(3), 851.
[15]Slonczewski, J. C., & Weiss, P. R. (1958). Band structure of graphite. Physical review, 109(2), 272.
[16]Geim, A. K., & Novoselov, K. S. (2010). The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals (pp. 11-19).
[17]Phiri, J., Gane, P., & Maloney, T. C. (2017). General overview of graphene: Production, properties and application in polymer composites. Materials Science and Engineering: B, 215, 9-28.
[18]Raccichini, R., Varzi, A., Passerini, S., & Scrosati, B. (2015). The role of graphene for electrochemical energy storage. Nature materials, 14(3), 271- 279.
[19] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
[20]Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., ... & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. nature, 457(7230), 706-710. [21]Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., ... & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565.
[22]Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., ... & de Heer, W. A. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191-1196.
[23]Yi, M., & Shen, Z. (2015). A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A, 3(22), 11700-11715.
[24]Bai, H., Li, C., & Shi, G. (2011). Functional composite materials based on chemically converted graphene. Advanced Materials, 23(9), 1089-1115.
[25]Li, X., Cai, W., Colombo, L., & Ruoff, R. S. (2009). Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano letters, 9(12), 4268- 4272.
[26]Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., & Cheng, H. M. (2011). Three- dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature materials, 10(6), 424-428.
[27]Yang, X., Cheng, C., Wang, Y., Qiu, L., & Li, D. (2013). Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. science, 341(6145), 534-537.
[28]Li, Y., Luong, D. X., Zhang, J., Tarkunde, Y. R., Kittrell, C., Sargunaraj, F., ... & Tour, J. M. (2017). Laser‐induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Advanced Materials, 29(27), 1700496.
[29]Chyan, Y., Ye, R., Li, Y., Singh, S. P., Arnusch, C. J., & Tour, J. M. (2018). Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS nano, 12(3), 2176-2183.
[30]Le, T. S. D., Park, S., An, J., Lee, P. S., & Kim, Y. J. (2019). Ultrafast laser pulses enable one‐step graphene patterning on woods and leaves for green electronics. Advanced Functional Materials, 29(33), 1902771.
[31]Le, T. S. D., Phan, H. P., Kwon, S., Park, S., Jung, Y., Min, J., ... & Kim, Y. J. (2022). Recent Advances in Laser‐Induced Graphene: Mechanism, Fabrication, Properties, and Applications in Flexible Electronics. Advanced Functional Materials, 32(48), 2205158.
[32]Luong, D. X., Subramanian, A. K., Silva, G. A. L., Yoon, J., Cofer, S., Yang, K., ... & Tour, J. M. (2018). Laminated object manufacturing of 3D‐ printed laser‐induced graphene foams. Advanced materials, 30(28), 1707416.
[33]Peng, Z., Ye, R., Mann, J. A., Zakhidov, D., Li, Y., Smalley, P. R., ... & Tour, J. M. (2015). Flexible boron-doped laser-induced graphene microsupercapacitors. ACS nano, 9(6), 5868-5875.
[34]Park, N. G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials today, 18(2), 65-72.
[35]Liu, C., Guo, J., Yu, L., Li, J., Zhang, M., Li, H., ... & Dai, D. (2021). Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light: Science & Applications, 10(1), 123.
[36]Qiu, Q., & Huang, Z. (2021). Photodetectors of 2D materials from ultraviolet to terahertz waves. Advanced Materials, 33(15), 2008126.
[37]Fang, H., & Hu, W. (2017). Photogating in low dimensional photodetectors. Advanced science, 4(12), 1700323.
[38]Long, M., Wang, P., Fang, H., & Hu, W. (2019). Progress, challenges, and opportunities for 2D material based photodetectors. Advanced Functional Materials, 29(19), 1803807.
[39]Ferrari, A. C., & Robertson, J. (2004). Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362(1824), 2477-2512.
[40]Beams, R., Cançado, L. G., & Novotny, L. (2015). Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter, 27(8), 083002.
[41]Johansson, L. S., Campbell, J. M., & Rojas, O. J. (2020). Cellulose as the in situ reference for organic XPS. Why? Because it works. Surface and Interface Analysis, 52(12), 1134-1138.
[42]Dualeh, A., Tétreault, N., Moehl, T., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2014). Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid‐state solar cells. Advanced Functional Materials, 24(21), 3250-3258.
[43]Guo, X., McCleese, C., Kolodziej, C., Samia, A. C., Zhao, Y., & Burda, C. (2016). Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite. Dalton Transactions, 45(9), 3806-3813.
[44]Park, B. W., Jain, S. M., Zhang, X., Hagfeldt, A., Boschloo, G., & Edvinsson, T. (2015). Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells. ACS nano, 9(2), 2088-2101.
[45]Saidaminov, M. I., Adinolfi, V., Comin, R., Abdelhady, A. L., Peng, W., Dursun, I., ... & Bakr, O. M. (2015). Planar-integrated single-crystalline perovskite photodetectors. Nature communications, 6(1), 8724.
[46]Jeng, J. Y., Chen, K. C., Chiang, T. Y., Lin, P. Y., Tsai, T. D., Chang, Y. C., ... & Hsu, Y. J. (2014). Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar heterojunction hybrid solar cells. Advanced materials, 26(24), 4107-4113.
[47]Ryu, S., Liu, L., Berciaud, S., Yu, Y. J., Liu, H., Kim, P., ... & Brus, L. E. (2010). Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano letters, 10(12), 4944-4951.
[48]Wang, Y., Zhang, Y., Lu, Y., Xu, W., Mu, H., Chen, C., ... & Bao, Q. (2015). Hybrid graphene–perovskite phototransistors with ultrahigh responsivity and gain. Advanced Optical Materials, 3(10), 1389-1396.
[49]Konstantatos, G., Clifford, J., Levina, L., & Sargent, E. H. (2007). Sensitive solution-processed visible-wavelength photodetectors. Nature photonics, 1(9), 531-534.
[50]De Iacovo, A., Venettacci, C., Giansante, C., & Colace, L. (2020). Narrowband colloidal quantum dot photodetectors for wavelength measurement applications. Nanoscale, 12(18), 10044-10050.
[51]Subramanian, A., Akram, J., Hussain, S., Chen, J., Qasim, K., Zhang, W., & Lei, W. (2019). High-performance photodetector based on a graphene quantum dot CH3NH3PbI3 perovskite hybrid. ACS Applied Electronic Materials, 2(1), 230-237.
[52]Gong, M., Sakidja, R., Goul, R., Ewing, D., Casper, M., Stramel, A., ... & Wu, J. Z. (2019). High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS nano, 13(2), 1772- 1783.
[53]Dong, R., Fang, Y., Chae, J., Dai, J., Xiao, Z., Dong, Q., ... & Huang, J. (2015). High‐gain and low‐driving‐voltage photodetectors based on organolead triiodide perovskites. Advanced materials, 27(11), 1912-1918.
[54]Wang, M., Sun, H., Cao, F., Tian, W., & Li, L. (2021). Moisture‐Triggered Self‐Healing Flexible Perovskite Photodetectors with Excellent Mechanical Stability. Advanced Materials, 33(16), 2100625.
校內:2026-08-18公開