簡易檢索 / 詳目顯示

研究生: 阮聖傑
Juan, Sheng-Chieh
論文名稱: 基於雙可重構智慧反射板於多用戶通訊系統之強韌聯合波束成型設計
Robust Joint Beamforming Design for Multi-User Communications Assisted by Double Reconfigurable Intelligent Surfaces
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 44
中文關鍵詞: 交換最佳化通道錯誤雙可重構智慧反射板聯合波束成型設計強韌波束成型設計
外文關鍵詞: Alternating optimization, Channel state information (CSI) error, Double RISs, Joint beamforming design, Robust beamforming
相關次數: 點閱:89下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們在可重構智慧反射板之通訊系統中探索主動與被動式波束成型設計的問題,由於單一可重構智慧反射板不足以服務多個使用者,我們考慮兩個可重構智慧反射板並且將使用者分為兩群,藉由從各群中選出一個使用者,我們專注於雙可重構智慧反射板系統的波束設計同時服務兩個使用者,對於通道強度較強的使用者,我們利用一個可重構智慧反射板服務該使用者並且利用另一個可重構智慧反射板消除干擾; 至於通道強度較弱的使用者,我們採用兩個可重構智慧反射板同時服務該使用者並且在訊雜比維持在一定程度上最小化傳送端的傳輸功率。因為兩個使用者的波束成型最佳化問題都是非凸優的型式,我們使用一些方法將其轉換成具有凸優特性的問題,並且找到基於交換最佳化方法之主動與被動波束成型設計的最佳解。接下來,由於通道強度較弱的用戶訊號品質較差,我們對其考慮強韌主動波束成型設計,並考慮兩種不同數學模型的通道錯誤,第一類是由量化錯誤造成的有邊界的通道錯誤,另一種是由通道估計造成的無邊界的通道錯誤,最後以模擬結果驗證所提方法的效能比現行常用波束成型效能更好。

    In this work, we explore the joint design problem of active and passive beamforming for reconfigurable intelligent surface (RIS) assisted communications. Since a single RIS may not be sufficient to serve multiple users, we consider two RISs and divide the users into two groups. By choosing one user from each group, we focus on the beamforming design for two users assisted by double RISs. Customized design strategies are considered for the two users, respectively. For the user with a stronger channel gain, we use one RIS to maximize the signal strength and the other to suppress interference. As to the user with a weaker channel gain, two RISs are used simultaneously to improve the signal-to-interference-plus-noise ratio using the minimal transmission power. Since
    the optimization problems for the two users are both non-convex, we introduce several relaxation techniques to transform the problems into convex ones that permit the optimization of the active and passive beamforming based on alternating optimization (AO). Next, we consider the robust active beamforming design for the far user because it's received signal quality is relatively poor. Two CSI error models are considered. The first one models the bounded CSI errors caused by the quantization process. The other one handles the unbounded CSI errors caused by the estimation process. Simulation results demonstrate that the proposed beamforming design outperforms existing beamforming strategies.

    Chinese Abstract i Abstract ii Acknowledgement iv Table of Contents v List of Figures vii List of Tables viii List of Symbols viii List of Acronyms x 1 Introduction 1 1.1 Brief 1 1.2 Motivation 1 1.3 Background 2 1.3.1 Reconfigurable Intelligent Surface 2 1.3.2 Alternating Optimization 3 1.3.3 Semidefinite Relaxation 4 1.3.4 Basic Concept of Beamforming 5 1.3.5 Minimize-Mean-Square-Error & Zero-Foring Based Beamforming 5 1.3.6 Two-Stage Algorithm 6 1.3.7 Bernstein-Type Inequality 7 1.4 Related Work 8 1.5 Organization Thesis 9 2 System Model & Proposed Methods 10 2.1 Double RISs Scenario 10 2.2 Signal Model 11 2.3 Channel Model 12 2.4 Problem Formulation 13 2.4.1 Near-user (User 1) Problem 14 2.4.2 Far-user (User 2) Problem 14 2.5 Joint Beamforming Design in The Double RISs System with Perfect CSI 15 2.5.1 Alternating Optimization Based Method 15 2.5.2 Definition of Threshold η 18 2.5.3 Scheduling Method 19 2.6 Joint Beamforming Design in The Double RISs System with Imperfect CSI 20 2.6.1 Alternating Optimization Based Method with Bounded CSI Errors 21 2.6.2 Alternating Optimization Based Method with Unbounded CSI Errors 22 3 Simulation Results 27 3.1 Simulation Set Up 27 3.2 Performance Comparison 27 3.2.1 Performance of the Proposed Method 29 3.2.2 Impact of λ1 32 3.2.3 Comparison of MMSE & ZF Beamforming 33 3.2.4 Analysis of Scheduling Method 35 3.2.5 Comparison with the Two Stage Method 36 3.2.6 Impact of CSI Radius for Bounded CSI Errors ϵ 37 3.2.7 Impact of Outage Probability ρ for Unbounded CSI Errors 38 3.2.8 Impact of the Non-Robust Beamforming Design on User 1 40 4 Conclusions 41 4.1 Summary Thesis 41 4.2 Future Work 42 References 43

    [1] E. Basar, M. D. Renzo, J. D. Rosny, M. Debbah, M. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, 2019.
    [2] W. Wang, M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. Di Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, “Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 421–439, Jan. 2021.
    [3] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via
    joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18,
    no. 11, pp. 5394–5409, Nov. 2019.
    [4] D. Gesbert, S. Hanly, H. Huang, S. Shamai Shitz, O. Simeone, and W. Yu, “Multi-cell mimo cooperative networks: A new look at interference,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 9, pp. 1380–1408, 2010.
    [5] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 20–34, 2010.
    [6] G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “A framework of robust transmission design for irs-aided miso communications with imperfect cascaded channels,” IEEE Transactions on Signal Processing, vol. 68, pp. 5092–5106, 2020.
    [7] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, Aug. 2019.
    [8] Q. Wu and R. Zhang, “Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1838–1851, Mar. 2020.
    [9] B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface assisted multi-user OFDMA: Channel estimation and training design,” IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 8315–8329, Dec. 2020.
    [10] Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent reflecting surface meets OFDM: Protocol design and rate maximization,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4522–4535, Jul. 2020.
    [11] Q. Wu and R. Zhang, “Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints,” IEEE J. Select. Areas Commun., vol. 38, no. 8, pp. 1735–1748, Aug. 2020.
    [12] Y. Han, S. Zhang, L. Duan, and R. Zhang, “Cooperative double-IRS aided communication: Beamforming design and power scaling,” IEEE Wireless Commun. Lett., vol. 9, no. 8, pp. 1206–1210, Aug. 2020.
    [13] G. C. Alexandropoulos, S. Samarakoon, M. Bennis, and M. Debbah, “Phase configuration learning in wireless networks with multiple reconfigurable intelligent surfaces,” in 2020 IEEE Globecom Workshops (GC Wkshps), 2020, pp. 1–6.
    [14] Q. Cao, H. Zhang, Z. Shi, H. Wang, Y. Fu, G. Yang, and S. Ma, “Outage performance analysis of Harq-aided multi-ris systems,” in Proc 2021 IEEE Wireless Communications and Networking Conference (WCNC), 2021, pp. 1–6.
    [15] C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Multicell mimo communications relying on intelligent reflecting surfaces,” IEEE Trans on Wireless Commun, vol. 19, no. 8, pp. 5218–5233, 2020.
    [16] X. Li, J. Fang, F. Gao, and H. Li, “Joint active and passive beamforming for intelligent reflecting surface-assisted massive MIMO systems,” CoRR, vol. abs/ 1912.00728, 2019. [Online]. Available: http://arxiv.org/abs/1912.00728
    [17] Y. Liu, L. Liu, and C. Xu, “Spectrum underlay-based water-filling algorithm in cognitive radio networks,” in Proc 2011 International Conference on Electric Information and Control Engineering, 2011, pp. 2614–2617.
    [18] Z.-Q. Luo and W. Yu, “An introduction to convex optimization for communications and signal processing,” IEEE J. Select. Areas Commun, vol. 24, no. 8, pp. 1426–1438, 2006.
    [19] M. Min and A. Chinchuluun, Optimization in Wireless Networks. Boston, MA: Springer US, 2006, pp. 891–915.
    [20] H. Zhang, B. Di, Z. Han, H. V. Poor, and L. Song, “Reconfigurable intelligent surface assisted multi-user communications: How many reflective elements do we need?” IEEE Wireless Commun. Lett.
    [21] P. Mursia, V. Sciancalepore, A. Garcia-Saavedra, L. Cottatellucci, X. C. Perez, and D. Gesbert, “RISMA: Reconfigurable intelligent surfaces enabling beamforming for iot massive access,” IEEE J. Select. Areas Commun., vol. 39, no. 4, pp. 1072–1085, Apr. 2021.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE