| 研究生: |
鄭子捷 Cheng, Tzu-Chieh |
|---|---|
| 論文名稱: |
以形態學方法探討都市風廊道與潛力降溫改善策略-臺南市安平與周邊區域為例 Based on morphology to evaluate urban ventilation path and the potential of lowering temperature-a study of Amping district of Tainan city |
| 指導教授: |
謝俊民
Hsieh, Chun-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 都市風廊道 、Frontal area index 、最小成本路徑法 、計算流體力學 、都市潛力升降溫因子 |
| 外文關鍵詞: | Ventilation path, Frontal area index, Least cost path, Computational fluid dynamics, potential temperature effect parameter |
| 相關次數: | 點閱:108 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
夏季都市熱島效應已造成都市內難耐的溫熱環境,提升都市風環境具有改善室外與室內熱舒適與驅散汙染等功能,為改善熱島效應良好的策略,於中尺度下判定都市內之粗糙度則有助於找出都市風廊道,引入周邊郊區風與海風以改善都市熱島效應。
本研究以都市型態學法指標(Frontal area index,FAI) 做為計算研究範圍內地表粗度的方法,代入6~8月夏季盛行風向南風與西風做為計算參數,得到結果為研究區域內中西區、北區、南區具有較高的 λ_(f )值,安南區與安平區西邊具有較低的 λ_f 值,就整個研究範圍而言,以西風計算的λ_f值高於南風,代表西風於研究範圍內較不容易進入。
本研究假設風會沿著較低的地表粗度前進,故以最小成本路徑法(Least cost path, LCP)計算南向北與西向東總共39條最低FAI累加路徑,得到研究範圍內具有南向北共3條與西向東共5條的FAI風廊道,並以計算流體力學(Computational fluid dynamics, CFD)進行驗證,以LCP法所計算出的FAI風廊道與CFD疊圖分析後發現路徑上風速皆有高於周邊風速的現象,因此判定LCP法於預測都市內風廊道則具有一定解釋能力。
另一部分探討對於都市溫度具有潛在影響的土地使用,並計算於100m X 100m大小網格內的面積,製作都市潛在升降溫圖,發現研究區域內主要聚有潛在升溫地點集中於安平工業區、中華西路、文賢路等主要道路其於零星散布於研究區域西側,研究區域具潛在降溫潛力的區域則集中於研究區東側海面、台江內海、與西北邊鹽水溪與周邊農業用地,利用最小成本路徑法計算西向東5條與南向北4條具有最高潛力降溫之路徑。
經由上述分析將FAI風廊道與潛在升降溫度圖疊圖分析後,發現研究區域內4處FAI風廊道交會地點具有較高的都市潛在升溫潛力,並提出以鋪面改善之對策。以都市潛在升降溫度圖層進行LCP計算,得到計畫區右側具有一條潛力降溫路徑,須降低此路徑上風向投影面積12245m^2以創造FAI風廊道流經於此潛力降溫路徑。
In summer, the heat island (HI) effect of the city has created the unbearable, extremely hot environment in the city.
The emphasis of ventilation should bring the advantages of reaching the comfortable temperature both indoors and outdoors and to disperse the pollutions.
The proper strategy of making the heat island effect improved is to find the ventilation path by ranging the degrees of roughness in the city. Through the ventilation path and the breeze from the suburban or the ocean would be also considered with being able to change this effect.
The main equation of morphometric, Frontal area index (λ_f), is used to calculate the surface roughness in this research.
To substitute the common wind directions, south wind and west wind, from June to August, the west district and the south district reveals the higher λ_(f ); on the contrary, Annan district and Anping district shows the lower λ_(f ).
Throughout the whole research area, the λ_(f ) calculated with the west wind is higher than the λ_(f ) effected by the south wind. It turns out that in the investigation area, it exists more difficulties in bringing the east wind in.
The wind may process along the lower surface roughness has been hypothesized in this research. To calculate by LCP least cost path, there are 39 lowest progressive paths from south toward north and east toward west. The data have been found from the investigation area would be 3 FAI ventilation paths of the direction, south toward north, and another 5 FAI ventilation paths of the direction, west toward east. This data have been proved by CFD Computational Fluid Dynamics. Moreover, through the analysis of FAI ventilation path calculated by LCP and CFD, the wind velocity in the path is more significant than the wind velocity around the path. It indicates that LCP could be applied in ventilation path.
The potential influence of the land usage to metropolis temperature is also discussed in this research. From the figures of potential temperature increasing and decreasing within the size of 100m X 100m, discovered that the heat areas of all the investigation area are mostly the master roads in Anping industry area, Zhonghua West Rd., and Wenxian Rd. The rest locations are discovered in the eastern part of the investigation area, and the area which might exist the cooling potential would be gathered in the western sea surface, the inner sea of Taijiang, west-northern salt water books, and the farmland surrounding.
To figure with LCP least cost path, 5 paths in the direction from west toward east, and another 4 paths in the direction from south toward north perform the highest potential to cool down the temperature.
1.Ashie, Y., K. HIRANO, et al. (2009). Effects of sea breeze on thermal environment as a measure against Tokyo¡¦s urban heat island.
2.Barlag, A. B. and W. Kuttler (1990). "The significance of country breezes for urban planning." Energy and Buildings 15(3-4): 291-297.
3.Burian, S. J., M. J. Brown, et al. (2002). "Morphological analyses using 3D building databases: Los Angeles, California." Los Alamos National Laboratory Rep. LA-UR-02-0781.
4.Burian, S. J., W. S. Han, et al. (2003). "Morphological analyses using 3D building databases: Oklahoma City, Oklahoma." LA-UR-, Los Alamos National Laboratory, Los Alamos, NM. 63pp.
5.Chandler, T. J. (1965). The climate of London, Hutchinson London.
6.Department of Architecture, CUHK,2008, Urban Climatic Map and Standards for Wind Environment - Feasibility Study Working Paper 1A: Draft Urban Climatic Analysis Map,Chinese Hong Kong University
7.Counihan, J. (1975). "Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880-1972." Atmospheric Environment (1967) 9(10): 871-905.
8.Dimoudi, A. and M. Nikolopoulou (2003). "Vegetation in the urban environment: microclimatic analysis and benefits." Energy and Buildings 35(1): 69-76.
9.Doulos, L., M. Santamouris, et al. (2004). "Passive cooling of outdoor urban spaces. The role of materials." Solar Energy 77(2): 231-249.
10.Duckworth, F. S. and J. S. Sandberg (1954). "The effect of cities upon horizontal and vertical temperature gradients." Bull. Amer. Meteor. Soc 35: 198-207.
11.Emmanuel, M. R. (2005). An urban approach to climate-sensitive design: strategies for the tropics, Taylor & Francis.
12.Gal, T. and Z. Sumeghy (2007). "Mapping the roughness parameters in a large urban area for urban climate applications." ACTA CLiMATOLOGICA ET CHOROLOGICA, Universitatis Szegediensis, Tomus: 40-41.
13.Gal, T. and J. Unger (2009). "Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area." Building and Environment 44(1): 198-206.
14.Grimmond, C. and T. Oke (1999). "Aerodynamic properties of urban areas derived from analysis of surface form." Journal of Applied Meteorology 38(9): 1262-1292.
15.Grimmond, C. and T. Oke (2002). "Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS)." Journal of Applied Meteorology 41(7): 792-810.
16.Kardinal Jusuf, S., N. Wong, et al. (2007). "The influence of land use on the urban heat island in Singapore." Habitat International 31(2): 232-242.
17.Lin, T. P. (2009). "Thermal perception, adaptation and attendance in a public square in hot and humid regions." Building and Environment 44(10): 2017-2026.
18.Matzarakis, A. and H. Mayer (1992). "Mapping of urban air paths for planning in Munich." Wiss. Ber. Inst. Meteor. Klimaforsch. Univ. Karlsruhe 16: 13-22.
19.Ng, E., V. Cheng, et al. (2008). Urban climatic map and standards for wind environment¡Xfeasibility study, Technical Input Report.
20.Ng, E., L. Katzschner, et al. (2008). Working Paper No. 1A: draft urban climatic analysis map¡Vurban climatic map and standards for wind environment¡Vfeasibility study, Technical Report for Planning Department HKSAR. Report No. WP1A. Planning Department of Hong Kong Government: Hong Kong.
21.Oke, T. R. (1987). Boundary layer climates, Routledge.
22.Pomerantz, M., B. Pon, et al. (2000). "The effect of pavements¡¦ temperatures on air temperatures in large cities." Publication No. LBNL-43442.
23.Santamouris, M. and D. N. Asimakopoulos (2001). Energy and climate in the urban built environment, Earthscan/James & James.
24.Santamouris, M., K. Pavlou, et al. (2007). "Recent progress on passive cooling techniques:: Advanced technological developments to improve survivability levels in low-income households." Energy and Buildings 39(7): 859-866.
25.Stathopoulou, M., A. Synnefa, et al. (2009). "A surface heat island study of Athens using high-resolution satellite imagery and measurements of the optical and thermal properties of commonly used building and paving materials." International Journal of Sustainable Energy 28(1): 59-76.
26.Sundborg, A. (1951). Climatological studies in Uppsala: With special regard to the temperature conditions in the urban area.
27.Synnefa, A., A. Dandou, et al. (2008). "Large scale albedo changes using cool materials to mitigate heat island in Athens." Journal of Applied Meteorology and Climatology 47(11): 2846-2856.
28.Wong, M. S., J. E. Nichol, et al. (2010). "A simple method for designation of urban ventilation corridors and its application to urban heat island analysis." Building and Environment 45(8): 1880-1889.
29.Xu, J., Q. Wei, et al. (2010). "Evaluation of human thermal comfort near urban waterbody during summer." Building and Environment 45(4): 1072-1080.
30.阪田升、長井大祐、小原久典、高野公敬(2007),移動境界を用いた車体周辺気流のCFD解析,自動車技術会秋季学術講演会において発表。
31.朱佳仁,2006,風工程概論,科技圖書出版公司(台北)
32.呂毓倫、林漢良,2008,應用遙測衛星地表溫度資料探討都市熱島現像與社經空間發展之關係,國立成功大學都市計劃學系碩士論文,臺南。
33.林憲德、孫振義、李魁鵬、郭曉青,2005,臺南地區都市規模與都市熱島強度之研究,都市與計劃,32(1):83-97頁。
34.香港中文大學建築學系,2005,空氣流通評估方法可行性研究研究結果摘要,香港中文大學。
35.李魁鵬,1999,台灣四大都會區都市熱島之研究,國立成功大學建築學系博士論文,臺南。
36.夏大明、洪錦墩、陳淑雯,2006,台中市都市服務範圍最適距離之適宜範圍研究,2006年台灣地理資訊學會年會暨學術研討會論文集。
37.許家成,2002,案例式推理於地理資訊系統的運用─ 以颱風路徑預測為例,國立臺灣大學地理環境資源研究所。
38.張傑,2009,以改良的A*演算法規劃較佳導引路徑之研究,大同大學資訊工程研究所,台北。
39.陳麒文 2004 溫度對尖峰負載及節約能源的影響,能源節約技術報導,52:18-25頁。
40.陳冠廷,2000,台灣中小型都市熱島效應之觀測解析,國立成功大學建築學系碩士論文,臺南。
41.鄒克萬、黃書偉,2007,都市土地利用變遷對自然環境衝擊之空間影響分析,地理學報,第四十八期。
42.劉紹臣、劉振榮、林傳堯、許乾忠、林文澤,2003,台灣西部平原熱島效應,看守台灣專題企劃。
43.3D立體熱流體模擬解析軟體「WindPerfect」,http://www.env-simulation.com/ch/index.html,環境技術模擬股份有限公司2009年6月20日。
44.ArcGIS desktop help http://webhelp.esri.com/arcgisdesktop/9.2/,2010 9月15日 ESRI