簡易檢索 / 詳目顯示

研究生: 林立涵
Lin, Li-Han
論文名稱: 多酚負載PLGA塗布之鎂支架於抗腐蝕性及促進內皮化應用
Anti-corrosion and Enhanced Endothelization of Polyphenol-loaded PLGA Coating for Magnesium Alloy Cardiovascular Stents
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 54
中文關鍵詞: 鎂合金心血管支架沒食子酸內皮化抗腐蝕
外文關鍵詞: Magnesium alloy, Cardiovascular stents, Gallic acid, Endothelization, Anticorrosion
相關次數: 點閱:104下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 比起生物可吸收的高分子支架,可吸收的鎂支架由於具有更好的機械性能而成為治療心肌灌注的解決方案。然而,未經改質處理的鎂合金無法提供適當的降解速率以適應血管重建的速度。而適當的內皮化,去覆蓋置放支架區域是預防性介入性治療手術後關鍵的血管內皮重塑過程。沒食子酸(Gallic acids, GA)是一種酚酸,其具有抗發炎,改善內皮細胞粘附力和抑制平滑肌細胞增殖的細胞生理的調節功能。然而,由於其高抗氧化活性和酸性環境,直接暴露於高濃度的GA容易導致細胞凋亡。因此,小分子洗脫塗層(PLGA(GA))採用三明治結構設計,GA層包裹在兩個聚D,L-丙交酯-乙交酯(PLGA)層之間,從而提高了耐腐蝕性鎂合金也可以防止GA突然釋放。在電化學分析中,PLGA(GA)夾層塗層可增強ZK60 Mg合金的2000倍的耐腐蝕性(以電流密度(µA / cm2)計)。從PLGA(GA)塗層釋放的GA分子通過捕獲自由基抑制氧化及發炎,並選擇性地促進內皮細胞的增殖並抑制平滑肌細胞的生長。在細胞遷移試驗中,PLGA(GA)延遲了平滑肌細胞的遷移,並展現內皮細胞的潛在遷移能力。 PLGA(GA)三明治塗層不僅提高了鎂合金的耐蝕性,而且有利於內皮化,這對於開發功能性血管支架具有預防晚期支架再狹窄化的巨大潛力。

    Absorbable magnesium stents have become an alternative to treat restenosis owing to better mechanical properties than bioabsorbable polymer. However, without modification, Mg alloys cannot provide the proper degradation rate required to match the vascular reform speed. A proper endothelialization covers the scaffolding region and induces regeneration. Gallic acids (GA) is a phenolic acid with attractive biological functions including anti-inflammation and the ability to promote endothelial cell proliferation and inhibit smooth muscle cell (SMC) growth. However, direct exposure to high concentrations of GA can cause cell apoptosis. Thus, a small-molecule eluting coating (PLGA(GA)) is designed using a sandwich-like configuration with a GA layer enclosed between PLGA layers, which increases the anticorrosion of magnesium alloys and prevents burst release of GA. In the electrochemical analysis, it was found that the PLGA(GA) sandwich coating enhanced corrosion resistance 2000 times (at a current density of (µA/cm 2 )) more than ZK60. The released GA molecules from PLGA(GA) inhibit oxidation by capturing free radicals and selectively promote the proliferation of endothelial cells and inhibit SMCs growth. In the cell migration assay, PLGA(GA) delayed wound closure in smooth muscle cells while showing potential migration ability in endothelial cells. The PLGA(GA) sandwich coating not only improved the corrosion resistance but also benefited endothelization, and thus has great potential to develop functional vascular stents that prevent late-stent restenosis.

    中文摘要 I Abstract II 誌謝 III Table of contents IV Lists of figures VII Lists of tables IX Chapter 1 INTRODUCTION 1 1.1 Biodegradable cardiovascular stents 1 1.2 Magnesium alloys 3 1.3 The comparison of surface modification 5 1.4 Polymetric coating 7 1.4.1 Strategies to find the ideal biodegradable polymer 7 1.4.2 Strategies to control the degradation rate 8 1.4.3 Strategies to increase biocompatibility 9 1.5 Phenolic molecules 10 1.6 Motivation 10 Chapter 2 MATERIALS AND METHODS 13 2.1 Experimental equipment and materials 13 2.1.1 Magnesium alloy 13 2.1.2 Experimental materials 13 2.1.3 Experimental equipment 14 2.2 Experimental methods 15 2.2.1 Alkaline heat treatment 15 2.2.2 Poly(lactic-co-glycolic acids) dip coating 15 2.2.3 Phenolic loaded coating 16 2.3 Experimental setup 16 2.4 Materials characterization 17 2.4.1 Surface morphology and chemical composition analysis 17 2.4.2 Functional group measurement & X-ray diffraction 17 2.5 Corrosion resistance analysis 17 2.5.1 Revised simulated body fluid solution 17 2.5.2 Hydrogen release 18 2.5.3 Electrochemical test 18 2.6 In vitro test 18 2.6.1 Cell culture 18 2.6.2 Cytotoxicity test/Cell viability 19 2.6.3 Cell adhesion 20 2.6.4 Cell migration 20 2.6.5 Hemolysis tests 20 2.6.6 Free radical activity tests 21 2.7 Statistic analysis 21 Chapter 3 RESULTS 23 3.1 XRD analysis 23 3.2 SEM images 23 3.2.1 Gallic acids content analysis 23 3.2.2 PLGA(GA) results 25 3.3 EDS analysis 26 3.4 FT-IR analysis 28 3.5 Hydrogen release compared with Bare ZK60, PLGA, and the optimized PLGA(GA) 29 3.6 Potential dynamic test 30 3.6.1 AHT analysis 30 3.6.2 Gallic acids content analysis 31 3.6.3 The optimized PLGA(GA) results 32 3.7 Cell viability 33 3.7.1 Polymetric concentration analysis 33 3.7.2 Gallic acids content analysis 34 3.7.3 The optimized PLGA(GA) results 35 3.8 Cell adhesion 37 3.8.1 AHT analysis 37 3.8.2 Polymetric coating 37 3.8.3 PLGA(GA) film 38 3.9 Cell migration of EC and SMC on PLGA(GA) film 39 3.10 Hemolysis 42 3.11 Free radical activity test 42 3.12 ZK60-stent prototype 43 Chapter 4 DISCUSSION 45 Chapter 5 CONCLUSION 48 References 49

    1. Hanawa, T. Materials for Metallic Stents. Journal of Artificial Organs. 2009, 12(2), 73-79.
    2. Stone, G.W. and Aronow, H.D. Long-term Care After Percutaneous Coronary Intervention: Focus on the Role of Antiplatelet Therapy. Mayo Clinic Proceedings. 2006, 81(5), 641-652.
    3. Dibra, A., et al. Effectiveness of Drug-eluting Stents in Patients With Bare-metal In-stent Restenosis: Meta-analysis of Randomized Trials. Journal of the American College of Cardiology. 2007, 49(5), 616-623.
    4. Hathcock, J.J. Flow Effects on Coagulation and Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006, 26(8), 1729-1737.
    5. Strohbach, A. and Busch, R. Polymers for Cardiovascular Stent Coatings. International Journal of Polymer Science. 2015, 2015, 1-11.
    6. Htay, T. and Liu, M.W. Drug-eluting Stent: a Review and Update. Vascular Health and Risk Management. 2005, 1(4), 263-276.
    7. Lei, L., et al. Stents as a Platform for Drug Delivery. Expert Opinion on Drug Delivery. 2011, 8(6), 813-831.
    8. Welt, F.G.P. and Rogers, C. Inflammation and Restenosis in the Stent Era. Arteriosclerosis, Thrombosis, and Vascular Biology. 2002, 22(11), 1769-1776.
    9. Ang, H.Y., et al., Fundamentals of Bioresorbable Stents. Functionalised Cardiovascular Stents. 2018, 75-97.
    10. Vroman, I. and Tighzert, L. Biodegradable Polymers. Materials. 2009, 2(2), 307-344.
    11. Schiavone, A., et al. Computational Analysis of Mechanical Stress-strain Interaction of a Bioresorbable Scaffold with Blood Vessel. Journal of Biomechanics. 2016, 49(13), 2677-2683.
    12. Moravej, M. and Mantovani, D. Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities. International Journal of Molecular Sciences. 2011, 12(7), 4250-4270.
    13. Ang, H.Y., et al. Mechanical Behavior of Polymer-based vs. Metallic-based Bioresorbable Stents. Journal of Thoracic Disease. 2017, S923-S934.
    14. Ramcharitar, S. and Serruys, P.W. Fully Biodegradable Coronary Stents. American Journal of Cardiovascular Drugs. 2008, 8(5), 305-314.
    15. Gu, X.N. and Zheng, Y.F. A Review on Magnesium Alloys as Biodegradable Materials. Frontiers of Materials Science in China. 2010, 4(2), 111-115.
    16. Altura, B.M. and Altura, B.T. Magnesium: Forgotten Mineral in Cardiovascular Biology and Atherogenesis. New Perspectives in Magnesium Research: Nutrition and Health. 2007, 239-260.
    17. Shaw, B.A., Corrosion Resistance of Magnesium Alloys. Corrosion: Fundamentals, Testing, and Protection. 2003, 692-695.
    18. Habib, A. and Finn, A.V. Endothelialization of Drug Eluting Stents and its Impact on Dual Anti-platelet Therapy Duration. Pharmacological Research. 2015, 93, 22-27.
    19. Shi, Y., et al. Understanding the Effect of Magnesium Degradation on Drug Release and Anti-proliferation on Smooth Muscle Cells for Magnesium-based Drug Eluting Stents. Corrosion Science. 2017, 123, 297-309.
    20. Cipriano, A.F., et al. Cytocompatibility and Early Inflammatory Response of Human Endothelial Cells in Direct Culture with Mg-Zn-Sr Alloys. Acta Biomaterialia. 2017, 48, 499-520.
    21. Cheng, Y.L., et al. Comparison of Corrosion Behaviors of AZ31, AZ91, AM60 and ZK60 Magnesium Alloys. Transactions of Nonferrous Metals Society of China. 2009, 19(3), 517-524.
    22. Xu, L., Willumeit-Römer, R., and Luthringer-Feyerabend, B.J.C. Effect of Magnesium-degradation Products and Hypoxia on the Angiogenesis of Human Umbilical Vein Endothelial Cells. Acta Biomaterialia. 2019, 98, 269-283.
    23. Melkikh, A. and Sutormina, M. Model of Active Transport of Ions in Cardiac Cell. Journal of Theoretical Biology. 2008, 252, 247-54.
    24. Li, Y., et al. Biodegradable Magnesium Alloy Stents as a Treatment for Vein Graft Restenosis. Yonsei Medical Journal. 2019, 60(5), 429-439.
    25. Chen, J., Tan, L., and Yang, K. Effect of Heat Treatment on Mechanical and Biodegradable Properties of an Extruded ZK60 Alloy. Bioactive Materials. 2016, 2(1), 19-26.
    26. Li, L., Gao, J., and Wang, Y. Evaluation of Cyto-toxicity and Corrosion Behavior of Alkali-heat-treated Magnesium in Simulated Body Fluid. Surface and Coatings Technology. 2004, 185(1), 92-98.
    27. Zhang, B., et al. Green Tea Polyphenol Induced Mg2+-rich Multilayer Conversion Coating: Toward Enhanced Corrosion Resistance and Promoted in situ Endothelialization of AZ31 for Potential Cardiovascular Applications. ACS Applied Materials & Interfaces. 2019, 11(44), 41165-41177.
    28. Zhang, B., et al. Bionic Tea Stain-like, All-nanoparticle Coating for Biocompatible Corrosion Protection. Advanced Materials Interfaces. 2019, 6(20), 1900899.
    29. Kim, S.Y., et al. Corrosion Resistance and Bioactivity Enhancement of MAO Coated Mg Alloy Depending on the Time of Hydrothermal Treatment in Ca-EDTA Solution. Scientific Reports. 2017, 7(1), 9061.
    30. Lin, X., et al. In vivo Degradatin and Tissue Compatibility of ZK60 Magnesium Alloy With Micro-arc Oxidation Coating in a Transcortical Model. Materials Science and Engineering: C. 2013, 33(7), 3881-3888.
    31. Makkar, P., et al. Development and Properties of Duplex MgF2/PCL Coatings on Biodegradable Magnesium Alloy for Biomedical Applications. PLOS ONE. 2018, 13(4), e0193927.
    32. Faustini, M., et al. Preparation of Sol−Gel Films by Dip-coating in Extreme Conditions. The Journal of Physical Chemistry C. 2010, 114(17), 7637-7645.
    33. Laith, I.A., et al. Outcomes of a Preoperative “Bridging” Strategy With Glycoprotein IIb/IIIa Inhibitors to Prevent Perioperative Stent Thrombosis in Patients With Drug-eluting Stents Who Undergo Surgery Necessitating Interruption of Thienopyridine Administration. EuroIntervention. 2013, 9(2), 204-211.
    34. Marx, S.O. and Marks, A. R. Bench to Bedside The Development of Rapamycin and Its Application to Stent Restenosis. 2001, 852-855.
    35. Poon, M., et al. Rapamycin Inhibits Vascular Smooth Muscle Cell Migration. The Journal of Clinical Investigation. 1996, 98(10), 2277-2283.
    36. Sousa, J.E., et al. Use of Rapamycin-impregnated Stents in Coronary Arteries. Transplantation Proceedings. 2003, 35(3, Supplement), S165-S170.
    37. Sollott, S.J., et al. Taxol Inhibits Neointimal Smooth Muscle Cell Accumulation After Angioplasty in the Rat. The Journal of Clinical Investigation. 1995, 95(4), 1869-1876.
    38. Kandzari, D.E. and Leon, M.B. Overview of Pharmacology and Clinical Trials Program with the Zotarolimus-eluting Endeavor Stent. Journal of Interventional Cardiology. 2006, 19(5), 405-413.
    39. Falotico, R., et al. NEVO™: a New Generation of Sirolimus-eluting Coronary Stent. EuroIntervention. 2009, 5, F88-F93.
    40. Lu, P., et al. Controllable Biodegradability, Drug Release Behavior and Hemocompatibility of PTX-eluting Magnesium Stents. Colloids and Surfaces B: Biointerfaces. 2011, 83(1), 23-28.
    41. Xu, L. and Yamamoto, A. In vitro Degradation of Biodegradable Polymer-coated Magnesium Under Cell Culture Condition. Applied Surface Science. 2012, 258(17), 6353-6358.
    42. Liu, L., et al. Comparison of Endothelial Cell Attachment on Surfaces of Biodegradable Polymer-coated Magnesium Alloys in a Microfluidic Environment. PLOS ONE. 2018, 13(10), e0205611.
    43. Ahmadi Lakalayeh, G., et al. Comparative Study of Different Polymeric Coatings for the Next-generation Magnesium-based Biodegradable Stents. Artificial Cells, Nanomedicine, and Biotechnology. 2018, 46(7), 1380-1389.
    44. Jiang, W., et al. Comparison Study on Four Biodegradable Polymer Coatings for Controlling Magnesium Degradation and Human Endothelial Cell Adhesion and Spreading. ACS Biomaterials Science & Engineering. 2017, 3(6), 936-950.
    45. Kang, M.H., et al. MgF2-coated Porous Magnesium/Alumina Scaffolds With Improved Strength, Corrosion Resistance, and Biological Performance for Biomedical Applications. Materials Science and Engineering: C. 2016, 62, 634-642.
    46. Bakhsheshi-Rad, H.R., Idris, M.H., and Abdul-Kadir, M.R. Synthesis and in vitro Degradation Evaluation of the Nano-HA/MgF2 and DCPD/MgF2 Composite Coating on Biodegradable Mg-Ca-Zn Alloy. Surface & Coatings Technology. 2013, 222(Complete), 79-89.
    47. He, Y., et al. Gallic Acid and Gallic Acid-loaded Coating Involved in Selective Regulation of Platelet, Endothelial and Smooth Muscle Cell Fate. RSC Advances. 2014, 4(1), 212-221.
    48. Kaiser, C., et al. Long-term Efficacy and Safety of Biodegradable-polymer Biolimus-eluting Stents. Circulation. 2015, 131(1), 74-81.
    49. Hou, Y.Z., et al. Ferulic Acid Inhibits Vascular Smooth Muscle Cell Proliferation Induced by Angiotensin II. European Journal of Pharmacology. 2004, 499(1), 85-90.
    50. Seob Lim, K., et al. Anti-inflammatory Effect of Gallic Acid-eluting Stent in a Porcine Coronary Restenosis Model. Acta Cardiologica Sinica. 2018, 34(3), 224-232.
    51. Diaz, M.N., et al. Antioxidants and Atherosclerotic Heart Disease. New England Journal of Medicine. 1997, 337(6), 408-416.
    52. Zanwar, A.A., et al., Role of Gallic Acid in Cardiovascular Disorders, in Polyphenols in Human Health and Disease. 2014, Academic Press: San Diego. 1045-1047.
    53. Badhani, B., Sharma, N., and Kakkar. R. Gallic Acid: a Versatile Antioxidant With Promising Therapeutic and Industrial Applications. RSC Advances. 2015, 5(35), 27540-27557.
    54. Scoccia, J., et al. Sustainable Oxidations With Air Mediated by Gallic Acid: Potential Applicability in the Reutilization of Grape Pomace. Green Chemistry. 2016, 18(9), 2647-2650.
    55. Yang, Z., et al. Gallic Acid Tailoring Surface Functionalities of Plasma-polymerized Allylamine-coated 316L SS to Selectively Direct Vascular Endothelial and Smooth Muscle Cell Fate for Enhanced Endothelialization. ACS Applied Materials & Interfaces. 2014, 6(4), 2647-2656.
    56. Cooper, L., et al. A Biocompatible Porous Mg-gallate Metal-organic Framework as an Antioxidant Carrier. Chemical Communications. 2015, 51(27), 5848-5851.
    57. Iswary, L., Md Arshad, M.K., and Subash, C.B.G. Nanodiagnostic Attainments and Clinical Perspectives on C-reactive Protein: Cardiovascular Disease Risks Assessment. Current Medicinal Chemistry. 2020, 27, 1-1.
    58. Waksman, R., et al. Effect of Magnesium Alloy Stents in Porcine Coronary Arteries: Morphometric Analysis of a Long-term Study. Catheterization and Cardiovascular Interventions. 2006, 68, 607-617.
    59. Barkholt, T.Ø., et al. Mechanical Properties of the Drug-eluting Bioresorbable Magnesium Scaffold Compared With Polymeric Scaffolds and a Permanent Metallic Drug-eluting Stent. Catheterization and Cardiovascular Interventions. 2019, 1-9.
    60. Lin, D.J., et al. Tailored Coating Chemistry and Interfacial Properties for Construction of Bioactive Ceramic Coatings on Magnesium Biomaterial. Materials & Design. 2016, 89, 235-244.
    61. Lin, D.J., et al. Development of a Novel Micro-textured Surface Using Duplex Surface Modification for Biomedical Mg Alloy Applications. Materials Letters. 2017, 206, 9-12.
    62. Lee, H.P., Lin, D.J., and Yeh, M.L. Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-like Cell Activity. Materials. 2017, 10(7), 696.
    63. Hideo-Kajita, A., et al. The Development of Magnesium-based Resorbable and Iron-based Biocorrodible Metal Scaffold Technology and Biomedical Applications in Coronary Artery Disease Patients. Applied Sciences. 2019, 9(17), 3527.
    64. Lin, D.J., et al. Dynamic Corrosion and Material Characteristics of Mg-Zn-Zr Mini-tubes: The Influence of Microstructures and Extrusion Parameters. Advanced Engineering Materials. 2017, 19(11), 1700159.
    65. Zhang, H., et al. Epigallocatechin Gallate (EGCG) Induced Chemical Conversion Coatings for Corrosion Protection of Biomedical Mg-Zn-Mn Alloys. Corrosion Science. 2015, 94, 305-315.
    66. Chen, S., et al. The Anticorrosion Mechanism of Phenolic Conversion Coating Applied on Magnesium Implants. Applied Surface Science. 2019, 463, 953-967.
    67. Lin, D.J., et al. Microstructure-modified Biodegradable Magnesium Alloy for Promoting Cytocompatibility and Wound Healing in vitro. Journal of Materials Science: Materials in Medicine. 2015, 26(10), 248.
    68. Ye, C., et al. Atorvastatin Eluting Coating for Magnesium-based Stents: Control of Degradation and Endothelialization in a Microfluidic Assay and In Vivo. Advanced Materials Technologies. 2020, 5(4), 1900947.
    69. Jung, O., et al. Improved in vitro Test Procedure for Full Assessment of the Cytocompatibility of Degradable Magnesium Based on ISO 10993-5/-12. International Journal of Molecular Sciences. 2019, 20(2), 255.
    70. Seyfert, U.T., Biehl, V., and Schenk, J. In vitro Hemocompatibility Testing of Biomaterials According to the ISO 10993-4. Biomolecular Engineering. 2002, 19(2), 91-96.
    71. Hirun, N., Dokmaisrijan, S., and Tantishaiyakul, V. Experimental FTIR and Theoretical Studies of Gallic Acid-acetonitrile Clusters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012, 86, 93-100.
    72. Uan, J. Y., et al. Evolution of Hydrogen From Magnesium Alloy Scraps in Citric Acid-added Seawater Without Catalyst. International Journal of Hydrogen Energy. 2009, 34(15), 6137-6142.

    下載圖示 校內:2023-06-12公開
    校外:2023-06-12公開
    QR CODE