| 研究生: |
陳俊豪 Chen, Chun-Hao |
|---|---|
| 論文名稱: |
探討RXD Motif 在 Rhodostomin 中對於整合蛋白辨識以及抑制黑色素細胞瘤的活性所扮演的角色 The Roles of Rhodostomin Mutants with an RXD Motif in Integrins Recognition and Anti-melanoma Tumor Cell Activity |
| 指導教授: |
莊偉哲
Chuang, Woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 去整合蛋白 、整合蛋白 、馬來腹蛇蛋白 、黑色素細胞瘤 |
| 外文關鍵詞: | Integrin, Disintegrin, Rhodostomin, Melanoma |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
整合蛋白參與許多生物體的重要機制,例如:血管新生、血栓形成、免疫反應、及骨質疏鬆,並且在許多人類重大疾病中扮演重要角色。許多重要的胞外基質蛋白中皆含有由arginine-glycine-aspartate三個氨基酸所組成的 RGD motif ,並且可以利用此序列與整合蛋白作用。然而也有研究指出,有些蛋白可以以非RGD序列與特定整合蛋白作用,例如:阿茲海莫症所引起的amyloid beta胜肽被發現可以利用RHD序列與整合蛋白alpha5beta1作用;而單株抗體OPG2則可利用RYD序列專一性地與整合蛋白alphaIIbbeta3結合。在本篇論文中,我們利用含有68個氨基酸及六對雙硫鍵,且擁有48PRGDMP53的序列的去整合蛋白:馬來腹蛇蛋白(簡稱Rho)作為模版,用以探討X50於RG50D motif之中對於去整合蛋白與整合蛋白之間辨識的影響。根據細胞黏著以及血小板凝集實驗結果,顯示RGD motif中的Gly的位置對於Rho與整合蛋白的辨識扮演重要角色。比較Rho與RXD突變株之間活性差異,發現Rho針對整合蛋白alphaVbeta3、alpha5beta1及alphaIIbbeta3皆擁有最好的抑制活性。相反的,RXD突變株對整合蛋白抑制活性較野生型差,其對整合蛋白的alphaVbeta33、alpha5beta31 及alphaIIbbeta33抑制能力分別下降2.8-35.4, 5.1-695.3及 8.0-1989.1倍,然而我們卻發現當Gly突變為Leu、Val、Ile、Asn及Asp時,RXD突變株會對提升對整合蛋白alphaVbeta3的特異性。在之前的研究中,當黑色素細胞瘤發展為較惡性、容易轉移的時期,其整合蛋白alphaVbeta3的表現量高於良性黑色素細胞瘤50-100倍。由流式細胞儀偵測細胞表面整合蛋白表現量,發現人類黑色素細胞瘤A375細胞的確會表現整合蛋白alphaVbeta3,並且也同時表現整合蛋白alpha5beta1及alphaVbeta5。因此延續以上實驗結果,我們進一步探討針對整合蛋白alphaVbeta3具有特異性的RXD突變株對於A375黑色素細胞瘤細胞黏著、移動及生長的影響。從細胞黏著實驗結果發現Rho與RLD及ARLDDL重組蛋白可以抑制細胞黏著於fibrinogen(IC50分別為 4.0, 13.1, 13.1 nM)以及vitronectin(IC50分別為135.5, 1556, 1768 nM),但卻無法抑制細胞黏著於fibronectin。從細胞移動實驗實驗結果發現Rho與RLD及ARLDDL重組蛋白可以有效的抑制A375細胞的移動,其IC50分別為9.2, 37.4, 45.1 nM,而由細胞侵犯實驗結果顯示,Rho與RLD及ARLDDL重組蛋白也可有效抑制細胞侵犯,並其IC50分別為18.0, 50.5, 63.2 nM。此外也發現Rho與RLD及ARLDDL重組蛋白會透過改變細胞週期進而抑制A375細胞anchorage-depentdent的生長,並且改變細胞的型態。然而RLD及ARLDDL卻不會引起A375細胞凋亡及抑制細胞anchorage-indepentdent的生長。整體而言,我們利用一種去整合蛋白—馬來腹蛇蛋白,藉由改變RXD motif的序列,設計出針對整合蛋白alphaVbeta3具有特異性的突變株,並且發現針對整合蛋白alphaVbeta3具有特異性的突變株可以有效的抑制人類黑色素細胞瘤的黏著、移動、侵犯及生長。由本篇實驗結果顯示由我們所設計出的針對整合蛋白alphaVbeta3具有特異性的突變株有潛力可做為治療黑色素細胞瘤的藥物。
Integrins are involved in many biological processes such as angiogenesis, thrombosis, inflammation, osteoporosis, and thus play a key role in many severe human diseases. The arginine-glycine-aspartate (RGD) motif is found in several important extracellular matrix proteins, which serve as adhesive integrin ligands. It was also reported that the motifs other than RGD can be recognized by integrins. For example, an RHD motif found in the Alzheimer's-disease causing beta peptides can interact with integrin alpha5beta1, and an RYD motif is found in an integrin alphaIIbbeta3-binding antibody. In this study I used rhodostomin, a disintegrin containing 68 amino acid residues with a 48PRGDMP53 motif, as the scaffold to study the role of the middle residue in the RXD motif in recognizing integrins. According to the results of cell adhesion and platelet aggregation assays, I found that the middle residues in the RXD motif of Rho play an important role in recognizing integrins. Rho containing the RGD motif has the highest activity toward integrins alphaIIbbeta3, alphaVbeta3, and alpha5beta1. In contrast, mutations on the middle residue in the RXD motif caused 2.8-35.4-, 5.1-695.3-, and 8.0-1989.1-folds deceases in inhibiting integrins alphaVbeta3, alpha5beta1, and alphaIIbbeta3. We also found that the Rho mutants containing L, V, I, E, and D in the middle residue of the RXD motif can selectively inhibit integrin alphaVbeta3. It is reported that integrinalphaVbeta3 increases 50- to 100-fold as human melanoma cells progress to a more metastatic phenotype. It was consistent with our flow cytometric analysis that integrin alphaVbeta3 was highly expressed on the surface of A375 cells. Besides, A375 cells also expressed integrin alphaVbeta5 andalpha5beta1. I then used integrin alphaVbeta3-specific Rho mutants to study the activities of integrin alphaVbeta3-specific Rho mutants in inhibiting the proliferation, migration, invasion, and apoptosis of human melanoma cells. The cell adhesion analysis showed that Rho, RLD and ARLDDL mutants inhibited the adhesion of A375 to fibrinogen with the IC50 values of 4.0, 13.1, and 13.1 nM, to vitronectin with the IC50 values of 135.5, 1556, 1768 nM, but not to fibronectin. The migration analysis showed that Rho, RLD and ARLDDL mutants effectively inhibited cell migration with IC50 values of 9.2, 37.4, and 45.1 nM, respectively. The result of matrigel invasion assay showed that Rho, RLD and ARLDDL mutants effectively inhibited cell invasion with IC50 values of 18.0, 50.5, and 63.2 nM, respectively. They also reduced cell growth by changing cell cycle and changed cell morphology of A375 melanoma cell. In contrast, RLD and ARLDDL mutants cannot induce cell apoptosis and inhibit the formation of colonies in soft agar. In conclusion, we designed integrin alphaVbeta3-specific disintegrins by mutating the RXD motif of Rho, and found they can inhibit the adhesion, migration, invasion, and growth of human melanoma cells in the nanomolar concentration range. This study demonstrated that integrin alphaVbeta3-specific Rho mutants designed by this study are potential drug candidates for melanoma treatment.
Arlo J. Miller and Martin C. Mihm, J. (2006). Mechanisms of Disease Melanoma
N Engl J Med 355, 51-65.
Arnaout, M.A., Mahalingam, B., and Xiong, J.P. (2005). Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol 21, 381-410.
Avraamides, C.J., Garmy-Susini, B., and Varner, J.A. (2008). Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8, 604-617.
Brooks, P.C., Stromblad, S., Sanders, L.C., von Schalscha, T.L., Aimes, R.T., Stetler-Stevenson, W.G., Quigley, J.P., and Cheresh, D.A. (1996). Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85, 683-693.
Calvete, J.J., Marcinkiewicz, C., Monleon, D., Esteve, V., Celda, B., Juarez, P., and Sanz, L. (2005). Snake venom disintegrins: evolution of structure and function. Toxicon 45, 1063-1074.
Castel, S., Pagan, R., Mitjans, F., Piulats, J., Goodman, S., Jonczyk, A., Huber, F., Vilaro, S., and Reina, M. (2001). RGD peptides and monoclonal antibodies, antagonists of alpha(v)-integrin, enter the cells by independent endocytic pathways. Lab Invest 81, 1615-1626.
Chang, H.H., Hu, S.T., Huang, T.F., Chen, S.H., Lee, Y.H., and Lo, S.J. (1993). Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun 190, 242-249.
Charo, I.F., Nannizzi, L., Smith, J.W., and Cheresh, D.A. (1990). The vitronectin receptor alpha v beta 3 binds fibronectin and acts in concert with alpha 5 beta 1 in promoting cellular attachment and spreading on fibronectin. J Cell Biol 111, 2795-2800.
Chiarugi, P., and Giannoni, E. (2008). Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol 76, 1352-1364.
Collins, N.L., Reginato, M.J., Paulus, J.K., Sgroi, D.C., Labaer, J., and Brugge, J.S. (2005). G1/S cell cycle arrest provides anoikis resistance through Erk-mediated Bim suppression. Mol Cell Biol 25, 5282-5291.
Correa, M.C., Jr., Maria, D.A., Moura-da-Silva, A.M., Pizzocaro, K.F., and Ruiz, I.R. (2002). Inhibition of melanoma cells tumorigenicity by the snake venom toxin jararhagin. Toxicon 40, 739-748.
Dennis, M.S., Carter, P., and Lazarus, R.A. (1993). Binding interactions of kistrin with platelet glycoprotein IIb-IIIa: analysis by site-directed mutagenesis. Proteins 15, 312-321.
Desgrosellier, J.S., Barnes, L.A., Shields, D.J., Huang, M., Lau, S.K., Prevost, N., Tarin, D., Shattil, S.J., and Cheresh, D.A. (2009). An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med 15, 1163-1169.
Desgrosellier, J.S., and Cheresh, D.A. (2009). Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10, 9-22.
Falkson, C.I., Ibrahim, J., Kirkwood, J.M., Coates, A.S., Atkins, M.B., and Blum, R.H. (1998). Phase III trial of dacarbazine versus dacarbazine with interferon alpha-2b versus dacarbazine with tamoxifen versus dacarbazine with interferon alpha-2b and tamoxifen in patients with metastatic malignant melanoma: an Eastern Cooperative Oncology Group study. J Clin Oncol 16, 1743-1751.
Faull, R.J., Du, X., and Ginsberg, M.H. (1994). Receptors on platelets. Methods Enzymol 245, 183-194.
Felding-Habermann, B., Fransvea, E., O'Toole, T.E., Manzuk, L., Faha, B., and Hensler, M. (2002). Involvement of tumor cell integrin alpha v beta 3 in hematogenous metastasis of human melanoma cells. Clin Exp Metastasis 19, 427-436.
Felding-Habermann, B., Mueller, B.M., Romerdahl, C.A., and Cheresh, D.A. (1992). Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest 89, 2018-2022.
Frisch, S.M., and Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124, 619-626.
Gehlsen, K.R., Davis, G.E., and Sriramarao, P. (1992). Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis 10, 111-120.
Goh, K.L., Yang, J.T., and Hynes, R.O. (1997). Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development 124, 4309-4319.
Gould, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.F., Holt, J.C., Cook, J.J., and Niewiarowski, S. (1990). Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med 195, 168-171.
Grossmann, J. (2002). Molecular mechanisms of "detachment-induced apoptosis--Anoikis". Apoptosis 7, 247-260.
Guo, R.T., Chou, L.J., Chen, Y.C., Chen, C.Y., Pari, K., Jen, C.J., Lo, S.J., Huang, S.L., Lee, C.Y., Chang, T.W., et al. (2001). Expression in Pichia pastoris and characterization by circular dichroism and NMR of rhodostomin. Proteins 43, 499-508.
Hemler, M.E., Huang, C., and Schwarz, L. (1987). The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subunit. J Biol Chem 262, 3300-3309.
Hersey, P., Sosman, J., O'Day, S., Richards, J., Bedikian, A., Gonzalez, R., Sharfman, W., Weber, R., Logan, T., Buzoianu, M., et al. (2010). A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), +/- dacarbazine in patients with stage IV metastatic melanoma. Cancer 116, 1526-1534.
Heyman, L., Leroy-Dudal, J., Fernandes, J., Seyer, D., Dutoit, S., and Carreiras, F. (2010). Mesothelial vitronectin stimulates migration of ovarian cancer cells. Cell Biol Int 34, 493-502.
Hodivala-Dilke, K. (2008). alphavbeta3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol 20, 514-519.
Hofmann, U.B., Westphal, J.R., Waas, E.T., Becker, J.C., Ruiter, D.J., and van Muijen, G.N. (2000). Coexpression of integrin alpha(v)beta3 and matrix metalloproteinase-2 (MMP-2) coincides with MMP-2 activation: correlation with melanoma progression. J Invest Dermatol 115, 625-632.
Hood, J.D., and Cheresh, D.A. (2002). Role of integrins in cell invasion and migration. Nat Rev Cancer 2, 91-100.
Huang, T.F., Wu, Y.J., and Ouyang, C. (1987). Characterization of a potent platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochim Biophys Acta 925, 248-257.
Huang, T.F., Yeh, C.H., and Wu, W.B. (2001). Viper venom components affecting angiogenesis. Haemostasis 31, 192-206.
Humphries, M.J. (2001). Cell-substrate adhesion assays. Curr Protoc Cell Biol Chapter 9, Unit 9 1.
Hynes, R.O. (1987). Integrins: a family of cell surface receptors. Cell 48, 549-554.
Kagami, S., Kondo, S., Loster, K., Reutter, W., Kuhara, T., Yasutomo, K., and Kuroda, Y. (1999). Alpha1beta1 integrin-mediated collagen matrix remodeling by rat mesangial cells is differentially regulated by transforming growth factor-beta and platelet-derived growth factor-BB. J Am Soc Nephrol 10, 779-789.
Kageshita, T., Hamby, C.V., Hirai, S., Kimura, T., Ono, T., and Ferrone, S. (2000). Alpha(v)beta3 expression on blood vessels and melanoma cells in primary lesions: differential association with tumor progression and clinical prognosis. Cancer Immunol Immunother 49, 314-318.
Kim, J.B., Yu, J.H., Ko, E., Lee, K.W., Song, A.K., Park, S.Y., Shin, I., Han, W., and Noh, D.Y. (2010). The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell cycle arrest. Phytomedicine 17, 436-440.
Kodandapani, R., Veerapandian, B., Kunicki, T.J., and Ely, K.R. (1995). Crystal structure of the OPG2 Fab. An antireceptor antibody that mimics an RGD cell adhesion site. J Biol Chem 270, 2268-2273.
Koivunen, E., Wang, B., and Ruoslahti, E. (1994). Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol 124, 373-380.
Koivunen, E., Wang, B., and Ruoslahti, E. (1995). Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y) 13, 265-270.
Kulkarni, G.V., Chen, B., Malone, J.P., Narayanan, A.S., and George, A. (2000). Promotion of selective cell attachment by the RGD sequence in dentine matrix protein 1. Arch Oral Biol 45, 475-484.
Lee, J.O., Rieu, P., Arnaout, M.A., and Liddington, R. (1995). Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80, 631-638.
Ma, Y., Qian, Y., and Lv, W. (2007). The correlation between plasma fibrinogen levels and the clinical features of patients with ovarian carcinoma. J Int Med Res 35, 678-684.
Maile, L.A., Aday, A.W., Busby, W.H., Sanghani, R., Veluvolu, U., and Clemmons, D.R. (2008). Modulation of integrin antagonist signaling by ligand binding of the heparin-binding domain of vitronectin to the alphaVbeta3 integrin. J Cell Biochem 105, 437-446.
Marcinkiewicz, C., Vijay-Kumar, S., McLane, M.A., and Niewiarowski, S. (1997). Significance of RGD loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v) beta3 integrins and expression of ligand-induced binding site. Blood 90, 1565-1575.
Matter, M.L., Zhang, Z., Nordstedt, C., and Ruoslahti, E. (1998). The alpha5beta1 integrin mediates elimination of amyloid-beta peptide and protects against apoptosis. J Cell Biol 141, 1019-1030.
Mauricio G. Mateu, M.L.V., David Andreu, and Esteban Domingo (1996). Systematic Replacement of Amino Acid Residues within an Arg-Gly-Asp-containing Loop of Foot-and-Mouth Disease Virus and Effect on Cell Recognition J Biol Chem 271 12814–12819
Mitjans, F., Sander, D., Adan, J., Sutter, A., Martinez, J.M., Jaggle, C.S., Moyano, J.M., Kreysch, H.G., Piulats, J., and Goodman, S.L. (1995). An anti-alpha v-integrin antibody that blocks integrin function inhibits the development of a human melanoma in nude mice. J Cell Sci 108 ( Pt 8), 2825-2838.
Mizejewski, R.J. (1999). Role of Integrins in Cancer: Survey of Expression Patterns. The Society for Experimental Biology and Medicine 222.
Monnier, Y., Farmer, P., Bieler, G., Imaizumi, N., Sengstag, T., Alghisi, G.C., Stehle, J.C., Ciarloni, L., Andrejevic-Blant, S., Moeckli, R., et al. (2008). CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Res 68, 7323-7331.
Mousa, S.A. (2002). Anti-integrin as novel drug-discovery targets: potential therapeutic and diagnostic implications. Curr Opin Chem Biol 6, 534-541.
Niewiarowski, S., McLane, M.A., Kloczewiak, M., and Stewart, G.J. (1994). Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin Hematol 31, 289-300.
Oliva, I.B., Coelho, R.M., Barcellos, G.G., Saldanha-Gama, R., Wermelinger, L.S., Marcinkiewicz, C., Benedeta Zingali, R., and Barja-Fidalgo, C. (2007). Effect of RGD-disintegrins on melanoma cell growth and metastasis: involvement of the actin cytoskeleton, FAK and c-Fos. Toxicon 50, 1053-1063.
Overholtzer, M., Mailleux, A.A., Mouneimne, G., Normand, G., Schnitt, S.J., King, R.W., Cibas, E.S., and Brugge, J.S. (2007). A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966-979.
Paolillo, M., Russo, M.A., Serra, M., Colombo, L., and Schinelli, S. (2009). Small molecule integrin antagonists in cancer therapy. Mini Rev Med Chem 9, 1439-1446.
Petit, M.C., Orlewski, P., Tsikaris, V., Sakarellos-Daitsiotis, M., Sakarellos, C., Tzinia, A., Konidou, G., Soteriadou, K.P., Marraud, M., and Cung, M.T. (1998). Solution structures of the fibronectin-like Leishmania gp63 SRYD-containing sequence in the free and antibody-bound states--transferred NOE and molecular dynamics studies. Eur J Biochem 253, 184-193.
Pfaff, M., McLane, M.A., Beviglia, L., Niewiarowski, S., and Timpl, R. (1994). Comparison of disintegrins with limited variation in the RGD loop in their binding to purified integrins alpha IIb beta 3, alpha V beta 3 and alpha 5 beta 1 and in cell adhesion inhibition. Cell Adhes Commun 2, 491-501.
Reed, J.C. (1999). Dysregulation of apoptosis in cancer. J Clin Oncol 17, 2941-2953.
Roman, J., Ritzenthaler, J.D., Roser-Page, S., Sun, X., and Han, S. (2010). {alpha}5{beta}1 Integrin Expression is Essential for Tumor Progression in Experimental Lung Cancer. Am J Respir Cell Mol Biol.
Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12, 697-715.
Sancey, L., Garanger, E., Foillard, S., Schoehn, G., Hurbin, A., Albiges-Rizo, C., Boturyn, D., Souchier, C., Grichine, A., Dumy, P. (2009). Clustering and internalization of integrin alphavbeta3 with a tetrameric RGD-synthetic peptide. Mol Ther 17, 837-843.
Schagger, H., Link, T.A., Engel, W.D., and von Jagow, G. (1986). Isolation of the eleven protein subunits of the bc1 complex from beef heart. Methods Enzymol 126, 224-237.
Schwarz, M., Meade, G., Stoll, P., Ylanne, J., Bassler, N., Chen, Y.C., Hagemeyer, C.E., Ahrens, I., Moran, N., Kenny, D., et al. (2006). Conformation-specific blockade of the integrin GPIIb/IIIa: a novel antiplatelet strategy that selectively targets activated platelets. Circ Res 99, 25-33.
Schwarz, M., Rottgen, P., Takada, Y., Le Gall, F., Knackmuss, S., Bassler, N., Buttner, C., Little, M., Bode, C., and Peter, K. (2004). Single-chain antibodies for the conformation-specific blockade of activated platelet integrin alphaIIbbeta3 designed by subtractive selection from naive human phage libraries. FASEB J 18, 1704-1706.
Shimaoka, M., and Springer, T.A. (2003). Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov 2, 703-716.
Shimaoka, M., Takagi, J., and Springer, T.A. (2002). Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct 31, 485-516.
Smith, J.W., Hu, D., Satterthwait, A., Pinz-Sweeney, S., and Barbas, C.F., 3rd (1994). Building synthetic antibodies as adhesive ligands for integrins. J Biol Chem 269, 32788-32795.
Smith, J.W., Le Calvez, H., Parra-Gessert, L., Preece, N.E., Jia, X., and Assa-Munt, N. (2002). Selection and structure of ion-selective ligands for platelet integrin alpha IIb(beta) 3. J Biol Chem 277, 10298-10305.
Springer, T.A., and Wang, J.H. (2004). The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Adv Protein Chem 68, 29-63.
Takagi, J. (2007). Structural basis for ligand recognition by integrins. Curr Opin Cell Biol 19, 557-564.
Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F., and Hynes, R.O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271-282.
Tian, J., Paquette-Straub, C., Sage, E.H., Funk, S.E., Patel, V., Galileo, D., and McLane, M.A. (2007). Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin. Toxicon 49, 899-908.
Trikha, M., Zhou, Z., Timar, J., Raso, E., Kennel, M., Emmell, E., and Nakada, M.T. (2002). Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res 62, 2824-2833.
Wang, Y., Rao, U., Mascari, R., Richards, T.J., Panson, A.J., Edington, H.D., Shipe-Spotloe, J.M., Donnelly, S.S., Kirkwood, J.M., and Becker, D. (1996). Molecular analysis of melanoma precursor lesions. Cell Growth Differ 7, 1733-1740.
Wattam, B., Shang, D., Rahman, S., Egglezou, S., Scully, M., Kakkar, V., and Lu, X. (2001). Arg-Tyr-Asp (RYD) and Arg-Cys-Asp (RCD) motifs in dendroaspin promote selective inhibition of beta1 and beta3 integrins. Biochem J 356, 11-17.
Wu, W.B., Peng, H.C., and Huang, T.F. (2003). Disintegrin causes proteolysis of beta-catenin and apoptosis of endothelial cells. Involvement of cell-cell and cell-ECM interactions in regulating cell viability. Exp Cell Res 286, 115-127.
Xiao, T., Takagi, J., Coller, B.S., Wang, J.H., and Springer, T.A. (2004). Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59-67.
Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., and Arnaout, M.A. (2001). Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 294, 339-345.
Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, M.A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151-155.
Yang, R.S., Tang, C.H., Chuang, W.J., Huang, T.H., Peng, H.C., Huang, T.F., and Fu, W.M. (2005). Inhibition of tumor formation by snake venom disintegrin. Toxicon 45, 661-669.
Yeh, C.H., Peng, H.C., Yang, R.S., and Huang, T.F. (2001). Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol Pharmacol 59, 1333-1342.
Zanardi, L.A., Battistini, L., Burreddu, P., Carta, P., Rassu, G., Curti, C., and Casiraghi, G. (2010). Targeting alpha(v)beta(3) Integrin: Design and Applications of Mono- and Multifunctional RGD-Based Peptides and Semipeptides. Curr Med Chem 17, 1255-1299.