| 研究生: |
林乃宣 Lin, Nai-Hsuan |
|---|---|
| 論文名稱: |
以分散式降雨逕流輸砂模式進行水資源與魚類棲地分析 Analyzing Water Resources and Fish Habitats Using a Distributed Rainfall-Runoff and Sediment Transport Model |
| 指導教授: |
張駿暉
Jang, Jiun-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 氣候變遷 、逕流量 、輸砂量 、二維水理與輸砂數值模式 、可靠度 、海岸水庫 、懸浮泥砂濃度 |
| 外文關鍵詞: | climate change, streamflow, sediment discharge, Sedimentation and River Hydraulics - Watershed Model (SRH-W), reliability, coastal reservoir, suspended sediment concentrations |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣屬亞熱帶氣候,雖然年降雨量豐沛,但因地勢陡峻及降雨集中於豐水期,導致大部分雨水迅速流入海洋,造成水資源調度困難。氣候變遷導致降雨時空分布更加極端,水資源面臨重大挑戰。傳統水庫受限於地形、生態與社會條件,建設地點日益稀少,且水庫淤積問題嚴重,影響其蓄水與調節功能。因此,開發新興水源成為重要課題,其中海岸水庫因具備能源消耗低、壽命長、生態衝擊小等優勢,已在多國推行並展現良好效益。本研究以具建設潛力之大鵬灣區域為例,選定其上游東港溪與林邊溪流域進行分析,利用SRH-W二維水理與輸砂數值模式(Sedimentation and River Hydraulics - Watershed Model),採用五種GCM並模擬基期(1995-2014年)及未來長期(2081-2100年)之逕流量與輸砂量,進行變化趨勢分析,並評估氣候變遷下設置海岸水庫之可行性。同時,為兼顧生態保育,亦進行魚類棲地分析,透過水深、流速與懸浮泥砂濃度等指標,判斷魚類不適棲息面積比例之變化,評估氣候變遷對魚類生存環境造成的潛在衝擊。綜合本研究模擬與分析結果,於未來氣候變遷情境下,兩流域之降雨量普遍呈現上升趨勢,進而導致逕流量與輸砂量呈增加趨勢,尤以豐水期增幅較為顯著。水庫進水量之年平均變化幅度相對有限,月季尺度則呈現夏季增加、冬季減少之趨勢。隨著需水量提升,缺水指標開始增加,需針對高需水情境提出供水策略。進一步探討不同庫容下之可靠度變化,結果指出庫容對供水系統穩定性具有影響,合理規劃庫容可有效提升供水系統於水文條件變動下之穩定性。生態模擬方面,魚類在未來氣候情境下之不適合棲息面積普遍增加,懸浮泥砂濃度上升亦加劇生存壓力,顯示氣候變遷對流域生態環境構成潛在威脅,未來應於水資源規劃中納入生態調適與保育考量,以提升整體流域系統之永續性。
Taiwan's steep topography and concentrated rainfall during the wet season, coupled with climate change, have led to uneven spatiotemporal distribution of precipitation and increased challenges in water resource management. This study utilizes the Sedimentation and River Hydraulics – Watershed Model (SRH-W) and incorporates five General Circulation Models (GCM) to simulate runoff and sediment yield for a baseline period (1995–2014) and a long-term future period (2081–2100). Trend analyses were conducted to assess potential changes, and the reliability of constructing a coastal reservoir under future climate conditions was evaluated. To integrate ecological considerations, fish habitat suitability was analyzed based on indicators such as water depth, flow velocity, and suspended sediment concentration, with changes in the proportion of unsuitable habitat areas used to assess potential impacts on aquatic life. The simulation results indicate an increasing trend in future precipitation, leading to higher runoff and sediment yield, especially during the wet season. As water demand increases, water scarcity indicators also rise, highlighting the need for adaptive water supply strategies under high-demand scenarios. Reliability analyses show that reservoir storage capacity significantly influences the stability of the water supply system; appropriately planned reservoir volumes can enhance system resilience under changing hydrological conditions. In terms of ecological impact, the area of unsuitable habitat for fish is projected to increase under future climate scenarios, with elevated suspended sediment concentrations further exacerbating survival stress. These findings suggest that climate change poses a potential threat to watershed ecosystems, underscoring the need to incorporate ecological adaptation and conservation measures into future water resource planning to enhance the sustainability of the overall watershed system.
1. Abdelwahab, O. M. M., Ricci, G. F., Gentile, F., & De Girolamo A. M. (2025). Modelling the impact of climate change on runoff and sediment yield in Mediterranean basins: the Carapelle case study (Apulia, Italy). Frontiers in Water, 7.
2.Asefa, T., Clayton, J., Adams, A., & Anderson, D. (2014). Performance evaluation of a water resources system under varying climatic conditions: Reliability, resilience, vulnerability and beyond. Journal of Hydrology, 508, 53-65.
3.Babur, M., Shrestha, S., Bhatta, B., Datta, A., & Ullah, H. (2020). Integrated Assessment of Extreme Climate and Landuse Change Impact on Sediment Yield in a Mountainous Transboundary Watershed of India and Pakistan. Journal of Mountain Science, 17(3), 624-640.
4.Bilotta, G. S., & Brazier, R. E. (2008). Understanding the Influence of Suspended Solids on Water Quality and Aquatic Biota. Water Research, 42(12), 2849-2861.
5.Booker, D. J. (2003). Hydraulic modelling of fish habitat in urban rivers during high flows. Hydrological processes, 17(3), 577-599.
6.Chapman, J. M., Proulx, C. L., Veilleux, M. A., Levert, C., Bliss, S., Andre, M.-E., Lapointe, N. W., & Cooke, S. J. (2014). Clear as mud: a meta-analysis on the effects of sedimentation on freshwater fish and the effectiveness of sediment-control measures. Water research, 56, 190-202.
7.Chaves, H. M. L., & Lorena, D. R. (2019). Assessing reservoir reliability using classical and long-memory statistics. Journal of Hydrology: Regional Studies, 26, 100641.
8.Chen, C.-N., Tfwala, S., & Tsai, C.-H. (2020). Climate Change Impacts on Soil Erosion and Sediment Yield in a Watershed in Southern Taiwan. Water, 12(8), 2247.
9.Gupta, S., & Kumar, S. (2017).Simulating climate change impact on soil erosion using RUSLE model − A case study in a watershed of mid-Himalayan landscape. Journal of Earth System Science, 126(4), 1-20.
10.Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982) Reliability, resilience and vulnerability for water resources system performance evaluation. Water Resources Research, 18, 14-20.
11.Heng, H. H., Pan, W. F., Siaw, F. L., & Hii, C. P. (2017). Coastal and estuary reservoir : case studies for Johor River Basin. Journal of Civil Engineering, Science and Technology, 8(1), 25-40.
12.Henley W. F., Patterson M. A., Neves R. J., & Dennis Lemly A. (2000). Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Reviews in Fisheries Science, 8(2), 125-139.
13.IPCC. (2021). Climate Change 2021: The Physical Science Basis.
14.IPCC. (2022). Climate change 2022: Impacts, adaptation and vulnerability.
15.Ji, R., Yang, S.-Q., Sivakumar, M., Enever, K., Bin Riaz, M. Z., Khalil, U. (2022). A coastal reservoir for Greater Sydney water supply in Shoalhaven river - A preliminary study. Water Supply, 22, 4457-4476.
16.Kang, B.-J., Kim, J.-H., Kim, Y. (2016) Engineering Criticality Analysis on an Offshore Structure using the First and Second-Order Reliability Method. International Journal of Naval Architecture and Ocean Engineering, 8(6), 577–588.
17.Kemp, P., Sear, D., Collins, A., Naden, P., & Jones, I. (2011). The impacts of fine sediment on riverine fish. Hydrological processes, 25(11), 1800-1821.
18.Kendall, M.G. (1975) Rank Correlation Methods. 4th Edition, Charles Griffin, London.
19.Kido, R., Inoue, T., Hatono, M., & Yamanoi, K. (2023) Assessing the impact of climate change on sediment discharge using a large ensemblerainfall dataset in Pekerebetsu River basin, Hokkaido. Progress in Earth and Planetary Science, 10(1), 54.
20.Koutsoyiannis, D. (2005). Reliability Concepts in Reservoir Design. In Lehr, J. H. & Keeley, J. (Eds.), Water Encyclopedia, 4, 256-259.
21.Kuria, F. W., & Vogel, R. M. (2014). A global water supply reservoir yield model with uncertainty analysis. Environmental Research Letters, 9(9), 095006.
22.Lai, Y. G., & Abban, B. (2023). SRH-W Application to Taiwan Watershed. Technical Report. ENV-2023-028, Technical Service Center, Bureau of Reclamation, Denver, CO.
23.Lai, Y. G., & Abban, B. (2023). SRH-ONE User’s Manual on Hydrological Watershed Modeling. Technical Service Center, Bureau of Reclamation, Denver, CO.
24.Lai, Y.G., Abban, B., & Politano, M. (2022). A process-based mesh-distributed watershed model for water runoff and soil erosion simulation. International Journal of River Basin Management, 22(1), 71-88.
25.Lamouroux, N., Olivier, J. M., Persat, H., PouilLy, M., Souchon, Y., & Statzner, B. (1999). Predicting community characteristics from habitat conditions: fluvial fish and hydraulics. Freshwater Biology, 42(2), 275-299.
26.Li, H., Yu, C., Qin, B., Li, Y., Jin, J., Luo, L., Wu, Z., Shi, K., & Zhu, G. (2022). Modeling the Effects of Climate Change and Land Use/Land Cover Change on Sediment Yield in a Large Reservoir Basin in the East Asian Monsoonal Region. Water, 14(15), 2346.
27.Liu, J., Yang, S., & Jiang, C. (2013). Coastal reservoirs strategy for water resource development-a review of future trend. Journal of Water Resource and Protection, 5 (3), 336-342.
28.Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245-259.
29.Nearing, M., Jetten, V. G., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le Bissonnais, Y., Nichols, M., Nunes, J. P., Renschler, C. S., Souchère, V., & Oost, K. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 61(2-3), 131-154.
30.Newcombe, C. P., & Macdonald, D. D. (1991), Effects of Suspended Sediments on Aquatic Ecosystems. North American Journal of Fisheries Management, 11(1), 72-82.
31.Newcombe, C. P., & Jensen, J. O. (1996). Channel suspended sediment and fisheries: a synthesis for quantitative assessment. North American Journal of Fisheries Management, 16(4), 693-727.
32.Nigel, W. A., & Simon, N. G. (2013). The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351–364.
33.Parthasarathy, C. R., Sitharam, T. G., & Kolathayar, S. (2018). Geotechnical considerations for the concept of coastal reservoir at Mangaluru to impound the flood waters of Netravati River. Marine Georesources & Geotechnology, 37(2), 236-244.
34.Pilkerton, A., Walters, A., & Rahel, F. (2022). Sediment and Fisheries: An Assessment to Inform Sediment Management Practices at Wyoming Dams. USGS-WWDC Water Research Program Project Report.
35.Pretto, P. B., Chiew, F. H., McMahon, T. A., Vogel, R. M., & Stedinger, J. R. (1997). The (mis)behavior of behavior analysis storage estimates. Water Resources Research, 33(4), 703-709.
36.Sediqi, M. N., Shiru, M. S., Nashwan, M. S., Ali, R., Abubaker, S. R., Wang, X., Ahmed, K., Shahid, S., Asaduzzaman, M., & Manawi, S. M. A. (2019). Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan. Sustainability, 11(20), 5836.
37.Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389.
38.Sitharam, T. G. (2017). Efficacy of coastal reservoirs to address India's water shortage by impounding excess river flood waters near the coast. Journal of Sustainable Urbanization Planning and Progress, 2(2), 50-55.
39.Sitharam, T. G., & Kolathayar, S. (2018). Thaneermukkom saltwater barrier to prevent saltwater intrusion: An overview of Kuttanad low land development. Hydrolink IAHR, 1, 14-17.
40.Sutherland, A. B., & Meyer, J.L. (2007). Effects of increased suspended sediment on growth rate and gill condition of two southern Appalachian minnows. Environ Biol Fish, 80, 389–403.
41.Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis. Indagationes mathematicae, 12(85), 173.
42.Vogel, R. M., Bolognese, R. A. (1995). Storage-reliability-resilience-yield relations for over-year water supply systems. Water Resources Research, 31(3), 645-654.
43.Wei, X., Cai, S., Ni, P., Zhan, W. (2020). Impacts of climate change and human activities on the water discharge and sediment load of the Pearl River, southern China. Scientific Reports, 10(1), 16743.
44.Wu, S.-J., Kuo, C.-Y., Yeh, K.-C., Wang, C.-D., & Wang, W.-J. (2021). Reliability analysis for reservoir water supply due to uncertainties in hydrological factors, rainfall-runoff routing and operating rule curves. Journal of Hydro-Environment Research, 34(3-4), 24–45.
45.Yang, S.-Q. (2005). Coastal reservoir. Singapore Patent no. 200504653-7.
46.Yang, S.-Q., & Ferguson, S. (2010). Coastal reservoirs can harness stormwater. Water Engineering Australia, 8, 25-27.
47.Yang, S.-Q., Liu, J., Lin, P. & Jiang, C. (2013). Coastal reservoir strategy and its applications. In R. Wurbs (Eds.), Water Resources Planning, Development and Management (pp. 95-115).
48.Yang, S.-Q., & Kelly, S. (2015). The use of coastal reservoirs and SPP strategy to provide sufficient high quality water to coastal communities. Journal of Geoscience and Environment Protection, 3(5), 80-92.
49.Yang, S.-Q. (2019). Historical review of existing coastal reservoirs and its applications. In Proceedings of the 38th IAHR World Congress, 3957-3973.
50.Zou, H., Liu, D., Guo, S., Xiong, L., Liu, P., Yin, J., Zeng, Y., Zhang, J., & Shen, Y. (2019). Quantitative assessment of adaptive measures on optimal water resources allocation by using reliability, resilience, vulnerability indicators. Stochastic Environmental Research and Risk Assessment, 34(2), 1-17.
51.Zhou, Y., Xu, Y., Xiao, W., Wang, J., Huang, Y., & Yang, H. (2017). Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China's Far Northeast. Water, 9(12), 966.
52.水利空間資訊服務平台。網址:https://gic.wra.gov.tw/gis/
53.王傳益、李昱廷、李俊穎、施漢鵬(2006)。「濁水溪中上游生態基流量之推估與應用」。逢甲大學水利工程學系。
54.李亮廷(2008)。集水區降雨特性、溪流流量及輸砂量變異分析-以陳有蘭溪流域為例。
55.吳瑞賢、毛振泰、陳芳瑜 (2008)。臺灣河川生態棲地分佈之研究-以卑南溪為例。水利會訊,11 2008.05[民97.05],1-7。
56.屏東縣政府(2020)。「流域綜合治理計畫」屏東縣管河川林邊溪水系治理規劃檢討。
57.屏東縣政府(2021)。屏東縣國土計畫書。
58.胡通哲、陳淑媛、陳彥旭、陳兆鈿(2022)。河川水域與濱溪棲地品質分析-以水璉溪為例。土木水利,49(2),21-26。
59.特有生物研究保育中心(2019)。河川原生魚種及棲地適合度曲線調查與資料庫建置成果報告。
60.許晃雄、王嘉琪、陳正達、李明旭、詹士樑 (2024)。國家氣候變遷科學報告2024:現象、衝擊與調適 [許晃雄、李明旭 主編]。國家科學及技術委員會與環境部聯合出版。
61.陳淑媛、陳兆鈿、胡通哲、蘇上瑄(2020)。「二維水理模式與 ArcGIS 空間內插法評估生態基流量-以鱉溪為例」,中華水土保持學報, 51(2), 43–54.
62.陳淑媛、陳兆鈿、梁家齊、胡通哲、鍾景光(2022)。「溪流棲地量化評估方法探討」,中華水土保持學報,53(3),190-201。
63.國家災害防救科技中心。全球災害事件簿。網址:https://den1.ncdr.nat.gov.tw/
64.虞淨卉、張文亮(2010)。水下攝影監測生態水路枯水期亞臨界流況魚類族群的分布。農業工程學報,56(4),83-97。
65.經濟部水利署水利規劃試驗所(2019)。河川原生魚種及棲地適合度曲線調查與資料庫建置。
66.經濟部水利署第七河川分署(2010)。東港溪下游段流路穩定及成效評估。
67.經濟部水利署第七河川分署(2011)。東港溪中上游段治理計畫。
68.經濟部水利署第七河川分署(2015)。東港溪下游段治理規劃檢討(麟洛溪排水以下至出海口)。
69.經濟部水利署第七河川分署(2019)。東港溪魅力河段生態檢核計畫。
70.臺灣魚類資料庫。。網址:https://fishdb.sinica.edu.tw/
71.臺灣氣候變遷推估資訊與調適知識平台計畫(2023)。AR6統計降尺度雨量資料資料生產履歷。
72.臺灣氣候變遷推估資訊與調適知識平台計畫(2023)。網格化觀測雨量V2版資料資料生產履歷。
校內:2027-07-31公開