簡易檢索 / 詳目顯示

研究生: 蔡志豪
Tsai, Chih-Hao
論文名稱: 具四自由度之FSM 主動式雷射光源補償系統的光學鏡組設計與功能驗證
Design and Characterization of Optical Prisms for 4-DOF FSM Active Laser Compensation System
指導教授: 劉建聖
Liu, Chien-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 112
中文關鍵詞: 快速反射鏡FSM歪斜光線追跡雷射擾動光束穩定
外文關鍵詞: Fast steering mirror, Skew-ray tracing, Laser fluctuation, Beam stabilization
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射的精度及穩定性不僅會受到外在環境的影響,也會受本身結構、熱源、輸入源等因素影響而產生四個自由度的擾動。為了改善雷射擾動問題以提升光源品質,本論文提出一套具四自由度的FSM主動式雷射光源補償系統,針對光學鏡組部分設計一創新的四自由度補償鏡組,除了改善市售補償系統具有元件數量較多、光路徑較長等缺點,更進一步改善了前人提出以double Porro prisms作為四自由度補償稜鏡會有對雷射之靈敏度過高的缺點。本論文設計之稜鏡在保有可調控雷射兩個平移及兩個角度共四自由度的特性下降低對雷射的靈敏度,藉此提升系統調控雷射的解析度。
    本論文利用光學模擬軟體Zemax建立系統整體架構,首先評估系統特性與鏡組補償功能,並與double Porro prisms比較鏡組對雷射之靈敏度關係,接著利用歪斜光線追跡法與齊次座標轉換建立補償鏡組之數學模型,分析鏡組對雷射的靈敏度關係,最後以LabVIEW建立系統閉迴路演算法與人機介面整合,並依照模擬參數將此系統之架構完整建置於光學桌上進行實驗,觀察雷射經過鏡組補償前後的差異,其量測結果證明本系統補償雷射擾動之有效性。

    The accuracy and stability of the laser are not only affected by the external environment, but also by its structure, thermal issue, and input, etc., resulting in fluctuations of four degrees of freedom (4-DOF). To solve the laser fluctuations problem to enhance light source quality, this thesis proposes a 4-DOF FSM active laser compensation system. An innovative 4-DOF compensation prism is designed against optical parts. In addition to improving the disadvantages of the commercially available compensation systems, such as a larger number of components and longer optical paths, the proposed system has further enhanced the shortcoming of high sensitivity to the laser by using double Porro prisms as 4-DOF compensation prisms proposed by the predecessor. The prism proposed in this thesis reduces the sensitivity to the laser while maintaining two translations and two rotations in 4-DOF control characteristic for laser, thereby improving the resolution of the system to control the laser.
    In this thesis, we use Zemax, an optical simulation software, to build the overall system, evaluate the system characteristics and the compensation function of the prism. Compare the sensitivity of the prism to laser with double Porro prisms, and then use the skew-ray tracing method and homogeneous coordinate to build the mathematical model of the compensation prism, and analyze the sensitivity of the prism to the laser. Finally, establish the closed-loop algorithm and human-machine interface by LabVIEW. The system was completely built on the optical table according to the simulation parameters for experiments, compare the results between the laser before and after compensation by the prism. The measurement results show the effectiveness of this system for laser fluctuations compensation.

    摘要 I ABSTRACT II 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 符號說明 XVI 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 1-3 論文架構 5 第二章 文獻回顧 6 2-1 雷射擾動相關文獻 6 2-1-1 探討雷射擾動現象及成因 6 2-1-2 修正或降低雷射擾動影響之量測系統 8 2-2 降低雷射擾動之技術 11 2-2-1 針對雷射頻率與功率之穩定技術 11 2-2-2 降低雷射幾何擾動之技術 14 第三章 基礎理論 22 3-1 幾何光學基本原理 22 3-2 齊次座標轉換 25 3-3 歪斜光線追蹤法 29 3-3-1 光源 29 3-3-2 球面邊界之歪斜光線追跡 31 3-3-3 平坦邊界之歪斜光線追跡 39 第四章 系統架構及設計原理 44 4-1 系統架構 45 4-2 補償鏡組設計原理 48 4-3 光學模擬及可行性分析 51 4-3-1 系統雷射擾動誤差模擬 53 4-3-2 鏡組補償功能模擬 58 4-3-3 鏡組對雷射靈敏度模擬比較 61 第五章 數學建模及鏡組特性分析 64 5-1 數學模型建立 64 5-1-1 第一部分數學建模 65 5-1-2 第二部分數學建模 68 5-2 補償鏡組對雷射之靈敏度分析 69 5-3 鏡組補償功能驗證 75 第六章 實驗架設及結果討論 79 6-1 元件介紹 79 6-2 鏡組解析度比較實驗結果 83 6-3 LabVIEW閉迴路補償系統建立 85 6-4 雷射誤差即時補償實驗結果 86 第七章 結論及未來規劃 97 7-1 結論 97 7-2 未來規劃 98 參考文獻 99 附錄 112

    [1] R. A. Potyrailo, W. G. Morris, A. M. Leach, T. M. Sivavec, M. B. Wisnudel, and S. Boyette, "Analog Signal Acquisition from Computer Optical Disk Drives for Quantitative Chemical Sensing," Anal. Chem., vol. 78, no. 16, pp. 5893-5899, 2006.
    [2] Y. Zhao, Y. L. Zhao, and L. K. Wang, "Application of femtosecond laser micromachining in silicon carbide deep etching for fabricating sensitive diaphragm of high temperature pressure sensor," Sens. Actuators, A, vol. 309, pp. 112017, 2020.
    [3] J. M. van Klink, H. M. Koopman, E. W. van Zwet, D. Oepkes, F. J. Walther, and E. Lopriore, "Cerebral Injury and Neurodevelopmental Impairment after Amnioreduction versus Laser Surgery in Twin-Twin Transfusion Syndrome: A Systematic Review and Meta-Analysis," Fetal Diagn. Ther., vol. 33, no. 2, pp. 81-89, 2013.
    [4] K. Tamura, R. Ishigami, and R. Yamagishi, "Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser," J. Nucl. Sci. Technol., vol. 53, no. 6, pp. 916-920, 2015.
    [5] J. Chen, D. N. Wang, A. Ramachandran, S. Chandran, M. Li, and R. Varma, "An open-path dual-beam laser spectrometer for path-integrated urban NO2 sensing," Sens. Actuators, A, vol. 315, pp. 112208, 2020.
    [6] 邱慶龍、黃楹鈞、葉錦清,"與光共舞轉動製造力 展望全球雷射產業趨勢",工具機與零組件,121,66-71,2020。
    [7] M. Sweeney, G. Rynkowski, M. Ketabchi, R. Crowley, "Design Considerations for Fast Steering Mirrors (FSMs)," presented at the Optical Scanning, 2002, pp. 63-73.
    [8] T. Shinshi, D. Shimizu, K. Kodeki, and K. Fukushima, "A Fast Steering Mirror Using a Compact Magnetic Suspension and Voice Coil Motors for Observation Satellites," Electronics, vol. 9, no. 12, pp. 1997, 2020.
    [9] Z. Wang and X. Cheng, "Research progress and development trend of fast steering mirror," J. Appl. Opt., vol. 40, no. 2, pp. 373-379, 2019.
    [10] Y. H. Gong, K. X. Yang, H. L. Yong, J. Y. Guan, G. L. Shentu, C. Liu, F. Z. Li, Y. Cao, J. Yin, S. K. Liao, J. G. Ren, Q. Zhang, C. Z. Peng, and J. W. Pan, "Free-space quantum key distribution in urban daylight with the SPGD algorithm control of a deformable mirror," Opt. Express, vol. 26, no. 15, pp. 18897-18905, 2018.
    [11] J. Schlarp, E. Csencsics, and G. Schitter, "Optical scanning of laser line sensors for 3D imaging," Appl. Opt., vol. 57, no. 18, pp. 5242-5248, 2018.
    [12] Q. Zhou, P. Ben Tzvi, D. Fan, and A. A. Goldenberg, "Design of fast steering mirror systems for precision laser beams steering," presented at the IEEE International Workshop on Robotic and Sensors Environments, 2008, pp. 144-149.
    [13] L. Yang, R. Liao, J. Lin, B. Sun, Z. Wang, P. Keogh, J. Zhu, "Enhanced 6D measurement by integrating an Inertial Measurement Unit (IMU) with a 6D sensor unit of a laser tracker," Opt. Lasers Eng., vol. 126, pp. 105902, 2020.
    [14] Y. Morimoto, T. Shinshi, and T. Nakai, "A TWO-DOF Controlled Lens Drive Actuator for Off-Axis Laser Beam Cutting," J. Adv. Mech. Des. Syst. Manuf., vol. 6, no. 6, pp. 875-884, 2012.
    [15] H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, "Geometric error measurement and compensation of machines—An update," CIRP Ann.-Manuf. Technol., vol. 57, no. 2, pp. 660-675, 2008.
    [16] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Wechenmann, W. T. Estler, H. Kunzmann, "Measurement technologies for precision positioning," CIRP Ann.-Manuf. Technol., vol. 64, no. 2, pp. 773-796, 2015.
    [17] P. M. B. S. Girao, O. A. Postolache, J. A. B. Faria, and J. M. C. D. Pereira, "An overview and a contribution to the optical measurement of linear displacement," IEEE Sens. J., vol. 1, no. 4, pp. 322-331, 2001.
    [18] Y. H. Chang, G. Hao, and C. S. Liu, "Design and characterisation of a compact 4-degree-of-freedom fast steering mirror system based on double Porro prisms for laser beam stabilization," Sens. Actuators, A, vol. 322, pp. 112639, 2021.
    [19] Y. H. Chang, C. S. Liu, and C. C. Cheng, "Design and Characterisation of a Fast Steering Mirror Compensation System Based on Double Porro Prisms by a Screw-Ray Tracing Method," Sensors (Basel), vol. 18, no. 11, pp. 4046, 2018.
    [20] Fast Steering Mirror, https://www.newport.com/f/fast-steering-mirror-systems.
    [21] E. Jakeman, C. J. Oliver, E. R. Pike, M. Lax, and M. Zwanziger, "The intensity fluctuation distribution of laser light," J. Phys. A: Gen. Phys., vol. 3, no. 6, pp. L52-L55, 1970.
    [22] J. A. Armstrong and A. W. Smith, "Intensity Fluctuations in GaAs Laser Emission," Phys. Rev., vol. 140, no. 1A, pp. A155-A164, 1965.
    [23] M. Tamir, U. Halavee, and E. Azoulay, "Power fluctuations caused by laser beam wandering and shift," Appl. Opt., vol. 20, no. 5, pp. 734-735, 1981.
    [24] D. H. Xu, Q. H. Cheng, L. Cao, and D. J. Wu, "Influence of Signal and Noise on Statistical Fluctuation of Single-Mode Laser System," Commun. Theor. Phys., vol. 46, no. 5, pp. 881-885, 2006.
    [25] I. Takeshi, S. Machida, K. Nawata, and T. Ikegami, "Intensity Fluctuations in Each Longitudinal Mode of a Multimode AIGaAs Laser," IEEE J. Quantum Electron., vol. 13, pp. 574-579, 1977.
    [26] A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Maischberger, "A mode selector to suppress fluctuations in laser beam geometry," J. Mod. Opt., vol. 28, no. 5, pp. 641-658, 1981.
    [27] S. Rowan and J. Hough, "Gravitational Wave Detection by Interferometry (Ground and Space)," Living Rev. Relativ., vol. 3, no. 1, pp. 4-31, 2000.
    [28] J. M. Alonso, B. Monacelli, J. Alda, and G. D. Boreman, "Infrared laser beam temporal fluctuations: characterization and filtering," Opt. Eng., vol. 44, no. 5, pp. 054203, 2005.
    [29] C. C. Kuo and C. S. Chao, "Characterization of Probe Lasers for Thin-Film Optical Measurements," J. Russ. Laser Res., vol. 31, no. 1, pp. 22-31, 2010.
    [30] Y. Zhao, Q. Feng, B. Zhang, and C. Cui, "Influence of beam radii on a common-path compensation method for laser beam drifts in laser collimation systems," Meas. Sci. Technol., vol. 27, no. 8, pp. 084013, 2016.
    [31] J. Isaacs and P. Sprangle, "Effect of laser noise on the propagation of laser radiation in dispersive and nonlinear media," J. Opt. Soc. Am. B: Opt. Phys., vol. 36, no. 2, pp. 346-355, 2019.
    [32] X. Yang and M. Gao, "Fluctuation characteristics of laser transmissions in atmospheric turbulence," Optik, vol. 202, pp. 163624, 2020.
    [33] P. Martin and S. Rothberg, "Introducing speckle noise maps for Laser Vibrometry," Opt. Lasers Eng., vol. 47, no. 3-4, pp. 431-442, 2009.
    [34] K. A. Janulewicz, C. M. Kim, and H. Stiel, "Speckle statistics and transverse coherence of an x-ray laser with fluctuations in its active medium," Opt. Express, vol. 21, no. 3, pp. 3225-3234, 2013.
    [35] S. Zhao, H. Wei, and Y. Li, "Dual-frequency laser displacement and angle interferometer," presented at the Optical Metrology and Inspection for Industrial Applications III, 2014, pp. 9276T.
    [36] H. Yang, W. Tao, Z. Zhang, S. Zhao, X. Yin, and H. Zhao, "Reduction of the Influence of Laser Beam Directional Dithering in a Laser Triangulation Displacement Probe," Sensors (Basel), vol. 17, no. 5, pp. 1126, 2017.
    [37] K. Li, C. Kuang, and X. Liu, "Small angular displacement measurement based on an autocollimator and a common-path compensation principle," Rev. Sci. Instrum., vol. 84, no. 1, pp. 015108, 2013.
    [38] W. Cheng, H. Cheng, Y. Wen, Y. Feng, Y. Guo, and M. Hu, "Telephoto structured laser autocollimation based on common-path compensation method and ellipse fitting algorithm," Opt. Eng., vol. 59, no. 2, pp. 024112, 2020.
    [39] F. Zhu, J. Tan, and J. Cui, "Beam splitting target reflector based compensation for angular drift of laser beam in laser autocollimation of measuring small angle deviations," Rev. Sci. Instrum., vol. 84, no. 6, pp. 065116, 2013.
    [40] F. Zhu, J. Tan, and J. Cui, "Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation method in compliance with the criteria with high accuracy and stability," Opt. Express, vol. 21, no. 9, pp. 11391-11403, 2013.
    [41] Y. He, S. Zhao, H. Wei, and Y. Li, "Noise reduction of air turbulence via thequasi-common-path method," Appl. Opt., vol. 56, no. 23, pp. 6668-6672, 2017.
    [42] P. Kienle, L. Batarilo, M. Akgül, M. H. Köhler, K. Wang, M. Jakobi, and A. W. Koch, "Optical Setup for Error Compensation in a Laser Triangulation System," Sensors (Basel), vol. 20, no. 17, pp. 4949, 2020.
    [43] Y. Zhu, S. Liu, C. Kuang, S. Li, and X. Liu, "Roll angle measurement based on common path compensation principle," Opt. Lasers Eng., vol. 67, pp. 66-73, 2015.
    [44] K. P. Birch, F. Reinboth, R. E. Ward, and G. Wilkening, "The Effect of Variations in the Refractive-Index of Industrial Air Upon the Uncertainty of Precision Length Measurement," Metrologia, vol. 30, no. 1, pp. 7-14, 1993.
    [45] G. Y. Ren, X. H. Qu, and S. Ding, "A Real-Time Measurement Method of Air Refractive Index Based on Special Material Etalon," Appl. Sci., vol. 8, no. 11, pp.2325, 2018.
    [46] H. Matsumoto, Y. Zhu, S. Iwasaki, and T. O'Ishi, "Measurement of the changes in air refractive index and distance by means of a two-color interferometer," Appl. Opt., vol. 31, no. 22, pp. 4522-4526, 1992.
    [47] K. Meiners-Hagen and A. Abou-Zeid, "Refractive index determination in length measurement by two-colour interferometry," Meas. Sci. Technol., vol. 19, no. 8, pp. 084004, 2008.
    [48] S. Matsuo, L. H. Yan, J. H. Si, T. Tomita, and S. Hashimoto, "Reduction of pulse-to-pulse fluctuation in laser pulse energy using the optical Kerr effect," Opt. Lett., vol. 37, no. 10, pp. 1646-1648, 2012.
    [49] L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, "Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer," Opt. Express, vol. 23, no. 25, pp. 32481-32489, 2015.
    [50] K. Aoyama, N. Yokota, and H. Yasaka, "3-kHz Spectral Linewidth Laser Assembly With Coherent Optical Negative Feedback," IEEE Photonics Technol. Lett., vol. 30, no. 3, pp. 277-280, 2018.
    [51] I. T. Sugiarto, M. Watanabe, S. Sunada, and M. Hyodo, "Frequency stabilization of dual-mode microchip laser by means of beat frequency stabilization," Opt. Rev., vol. 27, no. 1, pp. 98-107, 2019.
    [52] H. T. Thuy, Y. Y. Won, and D. S. Seo, "Spectral width reduction of a laser source by external phase noise compensation," Electron. Lett., vol. 55, no. 12, pp. 703-704, 2019.
    [53] T. P. Lamour, J. Sun, and D. T. Reid, "Wavelength stabilization of a synchronously pumped optical parametric oscillator: optimizing proportional-integral control," Rev. Sci. Instrum., vol. 81, no. 5, p. 053101, 2010.
    [54] P. Jin, H. Lu, J. Su, and K. Peng, "Scheme for improving laser stability via feedback control of intracavity nonlinear loss," Appl. Opt., vol. 55, no. 13, pp. 3478-3482, 2016.
    [55] V. I. Balakshy, Y. I. Kuznetsov, S. N. Mantsevich, and N. V. Polikarpova, "Dynamic processes in an acousto-optic laser beam intensity stabilization system," Opt. Laser Technol., vol. 62, pp. 89-94, 2014.
    [56] L. Bai, X. Wen, Y. Yang, J. He, and J. Wang, "Laser Intensity Noise Suppression for Preparing Audio-Frequency Squeezed Vacuum State of Light," Appl. Sci., vol. 10, no. 4, pp. 1415, 2020.
    [57] B. Merkel, D. Repp, and A. Reiserer, "Laser stabilization to a cryogenic fiber ring resonator," Opt. Lett., vol. 46, no. 2, pp. 444-447, 2021.
    [58] F. Tricot, D. H. Phung, M. Lours, S. Guerandel, and E. de Clercq, "Power stabilization of a diode laser with an acousto-optic modulator," Rev. Sci. Instrum., vol. 89, no. 11, pp. 113112, 2018.
    [59] Q. X. Li, S. H. Yan, E. L. Wang, X. Zhang, and H. K. Zhang, "High-precision and fast-response laser power stabilization system for cold atom experiments," Aip Adv., vol. 8, no. 9, pp. 095221, 2018.
    [60] D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, "Laser output power stabilization for direct laser writing system by using an acousto-optic modulator," Rev. Sci. Instrum., vol. 78, no. 10, pp. 103110, 2007.
    [61] R. Lin, D. Liu, J. Ruan, W. Zhao, X. Wang, J. Chen, Y. Guan, H. Zhang, F. Yu, J. Shi, and S. Zhang, "Laser Power Stabilization for the Detection of the Populations of the Atomic Double Levels in Cs Fountain Clock," presented at the 2014 IEEE International Frequency Control Symposium (FCS), 2014, pp. 1-3.
    [62] L. Chengxiang, Y. Zhenhua, W. Xu, and L. Feng, "Design of Automatic Temperature Control System on Laser Diode of Erbium-Doped Fiber Source," presented at the 2011 Fourth International Conference on Intelligent Computation Technology and Automation, 2011, pp. 404-407.
    [63] Y. Cai, B. Feng, Q. Sang, and K. C. Fan, "Real-Time Correction and Stabilization of Laser Diode Wavelength in Miniature Homodyne Interferometer for Long-Stroke Micro/Nano Positioning Stage Metrology," Sensors (Basel), vol. 19, no. 20, pp. 4587, 2019.
    [64] J. Pauwels and G. Verschaffelt, "Speckle reduction in laser projection using microlens-array screens," Opt. Express, vol. 25, no. 4, pp. 3180-3195, 2017.
    [65] X. Meng and L. Zeng, "Reducing the effect of laser beam fluctuations in a wind tunnel experiment by using an orthogonal-polarization compensation method," presented at the Technical Digest. CLEO/Pacific Rim 4th Pacific Rim Conference on Lasers and Electro-Optics, 2001, pp. 276-277.
    [66] E. Calloni, J. T. Baker, F. Barone, R. DeRosa, L. Di Fiore, L. Milano, and S. R. Restaino, "Adaptive optics approach for prefiltering of geometrical fluctuations of the input laser beam of an interferometric gravitational waves detector," Rev. Sci. Instrum., vol. 74, no. 4, pp. 2570-2574, 2003.
    [67] W. Q. Zhao, J. B. Tan, L. R. Qiu, L. M. Zou, J. W. Cui, and Z. Shi, "Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts," Rev. Sci. Instrum., vol. 76, no. 3, pp. 036101, 2005.
    [68] W. Zhao, L. Qiu, Z. Feng, and C. Li, "Laser beam alignment by fast feedback control of both linear and angular drifts," Optik, vol. 117, no. 11, pp. 505-510, 2006.
    [69] K. C. Fan and Y. Zhao, "A laser straightness measurement system using optical fiber and modulation techniques," Int. J. Mach. Tool. Manu., vol. 40, no. 14, pp. 2073-2081, 2000.
    [70] Q. Feng, B. Zhang, and C. Kuang, "A straightness measurement system using a single-mode fiber-coupled laser module," Opt. Laser Technol., vol. 36, no. 4, pp. 279-283, 2004.
    [71] C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, and Z. Zhang, "A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module," Sens. Actuators, A, vol. 125, no. 1, pp. 100-108, 2005.
    [72] C. Cui, Q. Feng, B. Zhang, and Y. Zhao, "System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser," Opt. Express, vol. 24, no. 6, pp. 6735-6748, 2016.
    [73] C. Bao, J. Li, Q. Feng, and B. Zhang, "Error-compensation model for simultaneous measurement of five degrees of freedom motion errors of a rotary axis," Meas. Sci. Technol., vol. 29, no. 7, pp. 075004, 2018.
    [74] J. Li, Q. Feng, C. Bao, and Y. Zhao, "Method for simultaneous measurement of five DOF motion errors of a rotary axis using a single-mode fiber-coupled laser," Opt. Express, vol. 26, no. 3, pp. 2535-2545, 2018.
    [75] 林坤緯,"使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證" 國立中央大學機械工程學系,碩士論文,2013。
    [76] C. S. Liu and K. W. Lin, "Numerical and experimental characterization of reducing geometrical fluctuations of laser beam based on rotating optical diffuser," Opt. Eng., vol. 53, no. 12, pp. 122408, 2014.
    [77] C. S. Liu, K. W. Lin, and S. H. Jiang, "Development of precise autofocusing microscope based on reduction of geometrical fluctuations," presented at the 2012 Proceedings of SICE Annual Conference, 2012, pp. 967-972.
    [78] C. S. Liu and S. H. Jiang, "A novel laser displacement sensor with improved robustness toward geometrical fluctuations of the laser beam," Meas. Sci. Technol., vol. 24, no. 10, pp. 105101, 2013.
    [79] J. W. Pan and C. H. Shih, "Speckle reduction and maintaining contrast in a LASER pico-projector using a vibrating symmetric diffuser," Opt. Express, vol. 22, no. 6, pp. 6464-6477, 2014.
    [80] J. W. Pan and C. H. Shih, "Speckle noise reduction in the laser mini-projector by vibrating diffuser," J. Opt., vol. 19, no. 4, pp. 045606, 2017.
    [81] T. K. Tran, X. Chen, O. Svensen, and M. N. Akram, "Speckle reduction in laser projection using a dynamic deformable mirror," Opt. Express, vol. 22, no. 9, pp. 11152-11166, 2014.
    [82] J. E. Harden, K. H. Chang, T. Seder, L. C. Chien, L. C. Chien, and D. J. Broer, "Near Zero Laser Speckle Liquid Crystal Device," presented at the Emerging Liquid Crystal Technologies XV, 2021, pp. 113030O.
    [83] R. Li, Y. Wang, P. Tao, R. Cheng, Z. Cheng, Y. Wei, and X. Dang, "Drift Reduction of a 4-DOF Measurement System Caused by Unstable Air Refractive Index," Sensors (Basel), vol. 20, no. 21, pp. 6329, 2020.
    [84] R. A. Hardin, Y. Liu, C. Long, A. Aleksandrov, and W. Blokland, "Active beam position stabilization of pulsed lasers for long-distance ion profile diagnostics at the Spallation Neutron Source (SNS)," Opt. Express, vol. 19, no. 4, pp. 2874-2885, 2011.
    [85] L. Zhang, R. Wang, W. Lin, and Z. Liao, "Compensation Method for Random Drifts of Laser Beams Based on Moving Average Feedback Control," presented at the 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technologies and Equipment, 2012, pp. 84170Q.
    [86] P. Cinquegrana, S. Cleva, A. Demidovich, G. Gaio, R. Ivanov, G. Kurdi, I. Nikolov, P. Sigalotti, and M. B. Danailov, "Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser," Phys. Rev. Accel. Beams, vol. 17, no. 4, pp. 040702, 2014.
    [87] L. Lou, F. Zhang, Y. Shentu, Y. Si, Y. Zhang, Y. Guo, P. Yang, H. Wang, H. Huang, and H. Song, "Stabilization of laser beam position based on a closed-loop fast steering mirror system," presented at the OCEANS 2017-Aberdeen, 2017, pp. 1-6.
    [88] S. Liu, S. Tan, Y. Huang, Y. Wang, and K. C. Fan, "Design of a compact four degree-of-freedom active compensation system to restrain laser's angular drift and parallel drift," Rev. Sci. Instrum., vol. 90, no. 11, pp. 115002, 2019.
    [89] Y. Huang, K. C. Fan, W. Sun, and S. Liu, "Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error," Opt. Express, vol. 26, no. 13, pp. 17185-17198, 2018.
    [90] S. Liu, S. Zhang, Y. Huang, Y. Wang, and K. Fan, "The Method for Restraining Laser Drift Based on Controlling Mirror," Nanomanuf. Metrol., vol. 1, no. 1, pp. 58-65, 2018.
    [91] Y. Cai, Q. Sang, Z. F. Lou, and K. C. Fan, "Error Analysis and Compensation of a Laser Measurement System for Simultaneously Measuring Five-Degree-of-Freedom Error Motions of Linear Stages," Sensors (Basel), vol. 19, no. 18, pp. 3833, 2019.
    [92] Y. Cai, B. Yang, and K. C. Fan, "Robust roll angular error measurement system for precision machines," Opt. Express, vol. 27, no. 6, pp. 8027-8036, 2019.
    [93] A. Li, Q. Li, X. Liu, Y. Zhang, and Z. Zhao, "Investigation of Inverse Solutions for Tilting Orthogonal Double Prisms in Laser Pointing With Submicroradian Precision," J. Light. Technol., vol. 38, no. 6, pp. 1341-1349, 2020.
    [94] J. Lee, J. Lee, and Y. H. Won, "Image stitching using an electrowetting-based liquid prism with a fabrication method," Opt. Express, vol. 29, no. 2, pp. 729-739, 2021.
    [95] M. Dobosz and O. Iwasinska-Kowalska, "Interference method for ultra-precision measurement and compensation of laser beam angular deflection," Appl. Opt., vol. 53, no. 1, pp. 111-122, 2014.
    [96] M. Dobosz, "Interference sensor for ultra-precision measurement of laser beam angular deflection," Rev. Sci. Instrum., vol. 89, no. 11, p. 115003, 2018.
    [97] K. Tyszka and M. Dobosz, "Laser beam angular stabilization system based on a compact interferometer and a precise double-wedge deflector," Rev. Sci. Instrum., vol. 89, no. 8, pp. 085121, 2018.
    [98] K. Tyszka, M. Dobosz, and T. Bilaszewski, "Double wedge prism based beam deflector for precise laser beam steering," Rev. Sci. Instrum., vol. 89, no. 2, pp. 025113, 2018.
    [99] M. Dobosz and M. Jankowski, "Interferometric, absolute sensor of angular micro-displacement," Precis. Eng., vol. 72, pp. 250-258, 2021.
    [100] O. Iwasinska-Kowalska, "Air wedge with variable refractive index for precise laser beam steering in a small range," Appl. Opt., vol. 57, no. 6, pp. 1417-1423, 2018.
    [101] O. Iwasińska-Kowalska, "Stabilisation of a laser beam with a liquid filled wedge with variable angle," Optik, vol. 185, pp. 692-698, 2019.
    [102] F. Zhu, Y. X. Li, and J. B. Tan, "Design of high-accuracy laser beam collimation system," Optics Precis. Eng., vol. 28, no. 4, pp. 817-826, 2020.
    [103] L. S. Pedrotti, "Basic geometrical optics," Fundamentals of photonics, pp. 73-116, 2008.
    [104] M. Katz, "Introduction to geometrical optics, " World Scientific Publishing Company, 2002.
    [105] W. J. Smith, "Modern optical engineering," Tata McGraw-Hill Education, 2008.
    [106] 蔡忠佑,"稜鏡成像位姿變化之分析與設計" 國立成功大學機械工程學系,博士論文,2007。
    [107] 陳俊仁,"使用歪斜光線追蹤法發展光電式多自由度量測系統" 國立成功大學機械工程學系,博士論文,2007。
    [108] P. D. Lin and C.-H. Lu, "Analysis and design of optical systems by use of sensitivity analysis of skew ray tracing," Appl. Opt., vol. 43, no. 4, pp. 796-807, 2004.
    [109] Y. T. Chen, W. C. Lin, and C. S. Liu, "Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage," Opt. Lasers Eng., vol. 92, pp. 94-104, 2017.
    [110] P. D. Lin and T.-T. Liao, "Skew ray tracing and sensitivity analysis of
    geometrical optics," J. Manuf. Sci. Eng., vol. 122, no. 2, pp. 338-349, 2000.
    [111] P. D. Lin, "New computation methods for geometrical optics" Springer, 2014.
    [112] 6-Axis Hexapod, https://www.newport.com/p/HXP50-MECA.
    [113] Duma PSD, https://www.dumaoptronics.com/spoton-analog-usb.

    無法下載圖示 校內:2026-08-26公開
    校外:2026-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE