| 研究生: |
陳人愷 Chen, Ren-Kai |
|---|---|
| 論文名稱: |
雙離子修飾奈米羥基磷灰石添加於羧酸化幾丁聚醣水膠電解質之超級電容的優勢表現 The role of nano-hydroxyapatite bearing zwitterion within carboxylated chitosan hydrogel electrolyte in superior performance of supercapacitors |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 超級電容器 、膠態電解質 、雙離子 、羥基磷灰石 |
| 外文關鍵詞: | Gel polymer electrolyte, Zwitterion, Hydroxyapatite |
| 相關次數: | 點閱:89 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製備雙離子修飾之羥基磷灰石(nHA-ZSi)並添加到高分子羧酸化幾丁聚醣 (Carboxylated chitosan, CCS)中形成一複合材料膜作為膠態電解質應用於電雙層電容器中,並探討雙離子羥基磷灰石在電解質中的作用。結果發現添加雙離子羥基磷灰石由於填料效應(Filler effect) 破壞CCS的高分子鏈的結晶並增加非晶相區,因此軟化了高分子基質且增強了高分子鏈之間的移動。另外雙離子效應(Zwitterion effect)其極佳的解離能力提供離子在電解質中移動時 形成離子通道幫助離子遷移,在添加 20 wt.% nHA-ZSi的複合膜離子傳導度可達 0.026 S/cm。組成對稱式超級電容器後,雙離子的親和性也改善了電解質與電極之間的界面關係 ,有助於離子更容易由高分子基質遷移至電極表面,因此降低了整體的等效串聯阻抗使其能堆積更多的離子並進一步的提升比電容值。儲能表現方面在電流密度 1 mA/cm2 時比電容為 110.9 F/g,在功率密度為 2912 W/Kg時能量密度為 10.67 Wh/Kg。此篇研究提出了一種利用低成本的製程提高電解質的強度、離子傳導度以及EDLC的電化學性能 。
Zwitterionic silane (ZSi) was synthesized by the ring-opening addition of (3-Aminopropyl)triethoxysilane (APTES) with 1,4-Butane sultone, then ZSi was grafted onto nano-hydroxyapatite (nHA) to obtained nano-hydroxyapatite grafted zwitterionic silane (nHA-ZSi). Finally, nHA-ZSi was mixed with carboxylated chitosan (CCS) uniformly at various weight percent to obtained the composite films. The incorporation of nHA-ZSi reduced the crystallization of the composite film due to filler effect. Stress-strain curve characterized CCS/ nHA-ZSi composite film with larger toughness and tensile strength than CCS. The electrolytes with nHA-ZSi showed higher ionic conductivity than that of pristine CCS due to ion migration channels produced by ZSi. Furthermore, CCS / 20% nHA-ZSi exhibited the best electrochemical performance in carbon-symmetry supercapacitor with specific capacitance of 110.9 F/g at 1 mA/cm2 and energy density of 10.67 Wh/Kg at power density of 2912 W/Kg. This work showed an innovative way to manufacture a low-cost, high-strength composite film to improve the electrochemical performance in EDLC.
[1] T. Kim et al., "Applications of voltammetry in lithium ion battery research," Journal of Electrochemical Science and Technology, vol. 11, no. 1, pp. 14-25, 2020.
[2] Y. Jiang and J. Liu, "Definitions of Pseudocapacitive Materials: A Brief Review," ENERGY & ENVIRONMENTAL MATERIALS, vol. 2, no. 1, pp. 30-37, 2019, doi: 10.1002/eem2.12028.
[3] F. Ciucci, "Modeling electrochemical impedance spectroscopy," Current Opinion in Electrochemistry, vol. 13, pp. 132-139, 2019.
[4] B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, and L. Pilon, "Physical interpretations of Nyquist plots for EDLC electrodes and devices," The Journal of Physical Chemistry C, vol. 122, no. 1, pp. 194-206, 2018.
[5] I. Yang, S.-G. Kim, S. H. Kwon, M.-S. Kim, and J. C. Jung, "Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes," Electrochimica Acta, vol. 223, pp. 21-30, 2017.
[6] B.-Y. Chang and S.-M. Park, "Electrochemical impedance spectroscopy," Annual Review of Analytical Chemistry, vol. 3, pp. 207-229, 2010.
[7] K. H. An et al., "Electrochemical properties of high‐power supercapacitors using single‐walled carbon nanotube electrodes," Advanced functional materials, vol. 11, no. 5, pp. 387-392, 2001.
[8] C. Lei, F. Markoulidis, Z. Ashitaka, and C. Lekakou, "Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC)," Electrochimica acta, vol. 92, pp. 183-187, 2013.
[9] J. Ho, T. R. Jow, and S. Boggs, "Historical introduction to capacitor technology," IEEE Electrical Insulation Magazine, vol. 26, no. 1, pp. 20-25, 2010, doi: 10.1109/mei.2010.5383924.
[10] A. K. Samantara and S. Ratha, "Historical Background and Present Status of the Supercapacitors," Springer Singapore, 2018, pp. 9-10.
[11] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media, 2013.
[12] A. Balakrishnan and K. Subramanian, Nanostructured ceramic oxides for supercapacitor applications. CRC Press Boca Raton, 2014.
[13] A. K. Samantara and S. Ratha, "Components of Supercapacitor," Springer Singapore, 2018, pp. 11-39.
[14] Q. Zhen, S. Bashir, and J. L. Liu, Nanostructured Materials for Next-Generation Energy Storage and Conversion: Advanced Battery and Supercapacitors. Springer, 2019.
[15] M. Lu, Supercapacitors: materials, systems, and applications. John Wiley & Sons, 2013.
[16] K. Keum, J. W. Kim, S. Y. Hong, J. G. Son, S. S. Lee, and J. S. Ha, "Flexible/stretchable supercapacitors with novel functionality for wearable electronics," Advanced Materials, vol. 32, no. 51, p. 2002180, 2020.
[17] L. L. Zhang and X. Zhao, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38, no. 9, pp. 2520-2531, 2009.
[18] A. González, E. Goikolea, J. A. Barrena, and R. Mysyk, "Review on supercapacitors: Technologies and materials," Renewable and sustainable energy reviews, vol. 58, pp. 1189-1206, 2016.
[19] S. M. Ji and A. Kumar, "Cellulose-Derived Nanostructures as Sustainable Biomass for Supercapacitors: A Review," Polymers, vol. 14, no. 1, p. 169, 2022.
[20] B. Pal, S. Yang, S. Ramesh, V. Thangadurai, and R. Jose, "Electrolyte selection for supercapacitive devices: a critical review," Nanoscale Advances, vol. 1, no. 10, pp. 3807-3835, 2019, doi: 10.1039/c9na00374f.
[21] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A review of electrolyte materials and compositions for electrochemical supercapacitors," Chemical Society Reviews, vol. 44, no. 21, pp. 7484-7539, 2015.
[22] A. Yu, V. Chabot, and J. Zhang, Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. Taylor & Francis, 2013.
[23] Q. Zhang, J. Rong, D. Ma, and B. Wei, "The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes," Energy & Environmental Science, vol. 4, no. 6, pp. 2152-2159, 2011.
[24] E. J. Brandon, W. C. West, M. C. Smart, L. D. Whitcanack, and G. A. Plett, "Extending the low temperature operational limit of double-layer capacitors," Journal of Power Sources, vol. 170, no. 1, pp. 225-232, 2007.
[25] R. D. Rogers and G. A. Voth, "Ionic liquids," Accounts of chemical research, vol. 40, no. 11, pp. 1077-1078, 2007.
[26] K. CHIBA, T. Ueda, and H. Yamamoto, "Highly conductive electrolytic solution for electric double-layer capacitor using dimethylcarbonate and spiro-type quaternary ammonium salt," Electrochemistry, vol. 75, no. 8, pp. 668-671, 2007.
[27] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, "Ionic-liquid materials for the electrochemical challenges of the future," Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp. 129-137, 2011.
[28] N. Choudhury, S. Sampath, and A. Shukla, "Hydrogel-polymer electrolytes for electrochemical capacitors: an overview," Energy & Environmental Science, vol. 2, no. 1, pp. 55-67, 2009.
[29] M. L. Verma, M. Minakshi, and N. K. Singh, "Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor," Electrochimica Acta, vol. 137, pp. 497-503, 2014.
[30] J. Ren, W. Bai, G. Guan, Y. Zhang, and H. Peng, "Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber," Advanced Materials, vol. 25, no. 41, pp. 5965-5970, 2013.
[31] M. Dissanayake, P. Jayathilaka, R. Bokalawala, I. Albinsson, and B.-E. Mellander, "Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO) 9LiCF3SO3: Al2O3 composite polymer electrolyte," Journal of Power Sources, vol. 119, pp. 409-414, 2003.
[32] S. J. Kwon, T. Kim, B. M. Jung, S. B. Lee, and U. H. Choi, "Multifunctional epoxy-based solid polymer electrolytes for solid-state supercapacitors," ACS applied materials & interfaces, vol. 10, no. 41, pp. 35108-35117, 2018.
[33] Z. Gadjourova, Y. G. Andreev, D. P. Tunstall, and P. G. Bruce, "Ionic conductivity in crystalline polymer electrolytes," Nature, vol. 412, no. 6846, pp. 520-523, 2001.
[34] S. Li, H. Jiang, T. Tang, Y. Nie, Z. Zhang, and Q. Zhou, "Improved electrochemical and mechanical performance of epoxy-based electrolytes doped with mesoporous TiO2," Materials Chemistry and Physics, vol. 205, pp. 23-28, 2018.
[35] X. Peng et al., "A zwitterionic gel electrolyte for efficient solid-state supercapacitors," Nature communications, vol. 7, no. 1, pp. 1-8, 2016.
[36] H. J. Min, M. S. Park, M. Kang, and J. H. Kim, "Excellent film-forming, ion-conductive, zwitterionic graft copolymer electrolytes for solid-state supercapacitors," Chemical Engineering Journal, vol. 412, p. 127500, 2021.
[37] M. Rinaudo, "Chitin and chitosan: Properties and applications," Progress in polymer science, vol. 31, no. 7, pp. 603-632, 2006.
[38] R. A. Muzzarelli, "Carboxymethylated chitins and chitosans," Carbohydrate polymers, vol. 8, no. 1, pp. 1-21, 1988.
[39] X. Fei Liu, Y. Lin Guan, D. Zhi Yang, Z. Li, and K. De Yao, "Antibacterial action of chitosan and carboxymethylated chitosan," Journal of applied polymer science, vol. 79, no. 7, pp. 1324-1335, 2001.
[40] M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, "Synthesis methods for nanosized hydroxyapatite with diverse structures," Acta biomaterialia, vol. 9, no. 8, pp. 7591-7621, 2013.
[41] M. H. Uddin, T. Matsumoto, M. Okazaki, A. Nakahira, and T. Sohmura, "Biomimetic fabrication of apatite related biomaterials," Biomimetics Learning from Nature, p. 63, 2010.
[42] S. S. Jee, R. K. Kasinath, E. DiMasi, Y.-Y. Kim, and L. Gower, "Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquid-precursor (PILP) process," CrystEngComm, vol. 13, no. 6, pp. 2077-2083, 2011.
[43] C.-H. Hou, S.-M. Hou, Y.-S. Hsueh, J. Lin, H.-C. Wu, and F.-H. Lin, "The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy," Biomaterials, vol. 30, no. 23-24, pp. 3956-3960, 2009.
[44] M. Zahouily, Y. Abrouki, B. Bahlaouan, A. Rayadh, and S. Sebti, "Hydroxyapatite: new efficient catalyst for the Michael addition," Catalysis Communications, vol. 4, no. 10, pp. 521-524, 2003.
[45] A. Bouhaouss, A. Bensaoud, A. Laghzizil, and M. Ferhat, "Effect of chemical treatments on the ionic conductivity of carbonate apatite," International Journal of Inorganic Materials, vol. 3, no. 6, pp. 437-441, 2001.
[46] Y. Hashimoto, T. Taki, and T. Sato, "Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions," Journal of environmental management, vol. 90, no. 5, pp. 1782-1789, 2009.
[47] B. Li, B. Guo, H. Fan, and X. Zhang, "Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro," Applied Surface Science, vol. 255, no. 2, pp. 357-360, 2008.
[48] Y. Wang, J. Dai, Q. Zhang, Y. Xiao, and M. Lang, "Improved mechanical properties of hydroxyapatite/poly (ɛ-caprolactone) scaffolds by surface modification of hydroxyapatite," Applied surface science, vol. 256, no. 20, pp. 6107-6112, 2010.
[49] H. W. Choi, H. J. Lee, K. J. Kim, H.-M. Kim, and S. C. Lee, "Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups," Journal of colloid and interface science, vol. 304, no. 1, pp. 277-281, 2006.
[50] M.-C. B. Salon, M. Abdelmouleh, S. Boufi, M. N. Belgacem, and A. Gandini, "Silane adsorption onto cellulose fibers: Hydrolysis and condensation reactions," Journal of colloid and interface science, vol. 289, no. 1, pp. 249-261, 2005.
[51] S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, "Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review," Progress in Polymer Science, vol. 38, no. 8, pp. 1232-1261, 2013.
[52] Y. Xie, C. A. Hill, Z. Xiao, H. Militz, and C. Mai, "Silane coupling agents used for natural fiber/polymer composites: A review," Composites Part A: Applied Science and Manufacturing, vol. 41, no. 7, pp. 806-819, 2010.
[53] Z. Luan, J. A. Fournier, J. B. Wooten, and D. E. Miser, "Preparation and characterization of (3-aminopropyl) triethoxysilane-modified mesoporous SBA-15 silica molecular sieves," Microporous and mesoporous materials, vol. 83, no. 1-3, pp. 150-158, 2005.
[54] H. Sardon, L. Irusta, M. J. Fernández-Berridi, M. Lansalot, and E. Bourgeat-Lami, "Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl) triethoxysilane (APTES)," Polymer, vol. 51, no. 22, pp. 5051-5057, 2010.
[55] M. Pourghasemi‐Lati, F. Shirini, M. Alinia‐Asli, and M. Rezvani, "Butane‐1‐sulfonic acid immobilized on magnetic Fe3O4@ SiO2 nanoparticles: A novel and heterogeneous catalyst for the one‐pot synthesis of barbituric acid and pyrano [2, 3‐d] pyrimidine derivatives in aqueous media," Applied Organometallic Chemistry, vol. 32, no. 10, p. e4455, 2018.
[56] A. Ślósarczyk, Z. Paszkiewicz, and C. Paluszkiewicz, "FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods," Journal of Molecular Structure, vol. 744, pp. 657-661, 2005.
[57] J. Reyes-Gasga, E. L. Martínez-Piñeiro, G. Rodríguez-Álvarez, G. E. Tiznado-Orozco, R. García-García, and E. F. Brès, "XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite," Materials Science and Engineering: C, vol. 33, no. 8, pp. 4568-4574, 2013.
[58] R. Panda, M. Hsieh, R. Chung, and T. Chin, "FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique," Journal of Physics and Chemistry of Solids, vol. 64, no. 2, pp. 193-199, 2003.
[59] S. W. Pelletier and B. S. Joshi, "Carbon-13 and proton NMR shift assignments and physical constants of norditerpenoid alkaloids," in Alkaloids: chemical and biological perspectives: Springer, 1991, pp. 297-564.
[60] K. Lundquist, "Proton (1 H) NMR Spectroscopy," in Methods in lignin chemistry: Springer, 1992, pp. 242-249.
[61] Z. Dong, J. Mao, M. Yang, D. Wang, S. Bo, and X. Ji, "Phase behavior of poly (sulfobetaine methacrylate)-grafted silica nanoparticles and their stability in protein solutions," Langmuir, vol. 27, no. 24, pp. 15282-15291, 2011.
[62] C. M. Laureano-Anzaldo, N. B. Haro-Mares, J. C. Meza-Contreras, J. R. Robledo-Ortíz, and R. Manríquez-González, "Chemical modification of cellulose with zwitterion moieties used in the uptake of red Congo dye from aqueous media," Cellulose, vol. 26, no. 17, pp. 9207-9227, 2019.
[63] A. Lucia, M. Bacher, H. W. van Herwijnen, and T. Rosenau, "A direct silanization protocol for dialdehyde cellulose," Molecules, vol. 25, no. 10, p. 2458, 2020.
[64] J. Earl, D. Wood, and S. Milne, "Hydrothermal synthesis of hydroxyapatite," in Journal of Physics: Conference Series, 2006, vol. 26, no. 1: IOP Publishing, p. 064.
[65] M. Mir et al., "XRD, AFM, IR and TGA study of nanostructured hydroxyapatite," Materials Research, vol. 15, no. 4, pp. 622-627, 2012.
[66] O. C. Wilson Jr and J. R. Hull, "Surface modification of nanophase hydroxyapatite with chitosan," Materials Science and Engineering: C, vol. 28, no. 3, pp. 434-437, 2008.
[67] M. Moharram and M. A. Allam, "Study of the interaction of poly (acrylic acid) and poly (acrylic acid‐poly acrylamide) complex with bone powders and hydroxyapatite by using TGA and DSC," Journal of applied polymer science, vol. 105, no. 6, pp. 3220-3227, 2007.
[68] W. I. Goldburg, "Dynamic light scattering," American Journal of Physics, vol. 67, no. 12, pp. 1152-1160, 1999.
[69] M. Kaszuba, D. McKnight, M. T. Connah, F. K. McNeil-Watson, and U. Nobbmann, "Measuring sub nanometre sizes using dynamic light scattering," Journal of nanoparticle research, vol. 10, no. 5, pp. 823-829, 2008.
[70] M. N. Salimi, R. H. Bridson, L. M. Grover, and G. A. Leeke, "Effect of processing conditions on the formation of hydroxyapatite nanoparticles," Powder Technology, vol. 218, pp. 109-118, 2012.
[71] T. Mori, Y. Okada, and H. Kamiya, "Effect of surface modification of silica particles on interaction forces and dispersibility in suspension," Advanced Powder Technology, vol. 27, no. 3, pp. 830-838, 2016.
[72] M. Wiśniewska, S. Chibowski, and T. Urban, "Nanozirconia surface modification by anionic polyacrylamide in relation to the solid suspension stability—Effect of anionic surfactant addition," Powder Technology, vol. 302, pp. 357-362, 2016.
[73] G. Eder, H. Janeschitz-Kriegl, and S. Liedauer, "Crystallization processes in quiescent and moving polymer melts under heat transfer conditions," Progress in Polymer Science, vol. 15, no. 4, pp. 629-714, 1990.
[74] A. Toda, R. Androsch, and C. Schick, "Insights into polymer crystallization and melting from fast scanning chip calorimetry," Polymer, vol. 91, pp. 239-263, 2016.
[75] K. Sakurai, T. Maegawa, and T. Takahashi, "Glass transition temperature of chitosan and miscibility of chitosan/poly (N-vinyl pyrrolidone) blends," Polymer, vol. 41, no. 19, pp. 7051-7056, 2000.
[76] P. F. Ortega, J. P. C. Trigueiro, G. G. Silva, and R. L. Lavall, "Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid," Electrochimica Acta, vol. 188, pp. 809-817, 2016.
[77] Y. Liu, J. Y. Lee, and L. Hong, "Morphology, crystallinity, and electrochemical properties of in situ formed poly (ethylene oxide)/TiO2 nanocomposite polymer electrolytes," Journal of applied polymer science, vol. 89, no. 10, pp. 2815-2822, 2003.
[78] S. Popovics, "A numerical approach to the complete stress-strain curve of concrete," Cement and concrete research, vol. 3, no. 5, pp. 583-599, 1973.
[79] M. Liu, K. Turcheniuk, W. Fu, Y. Yang, M. Liu, and G. Yushin, "Scalable, safe, high-rate supercapacitor separators based on the Al2O3 nanowire polyvinyl butyral nonwoven membranes," Nano Energy, vol. 71, p. 104627, 2020.
[80] X. Xin, Y. Wang, Z. Meng, and F. Yan, "Improving mechanical properties and fretting wear resistance of ultra‐high‐molecular‐weight‐polyethylene via incorporation of zeolitic imidazolate frameworks‐carbon nano‐fiber," Polymers for Advanced technologies, vol. 32, no. 6, pp. 2622-2632, 2021.
[81] Y. Wang, L. Liu, Y. Liu, N. Li, Z. Hu, and S. Chen, "Double-filler composite sulfonated poly (aryl ether ketone) membranes with graphite carbon nitride and graphene oxide as polyelectrolyte for fuel cells," Polymer, vol. 238, p. 124426, 2022.
[82] F. Hu et al., "Novel poly (arylene ether ketone)/poly (ethylene glycol)-grafted poly (arylene ether ketone) composite microporous polymer electrolyte for electrical double-layer capacitors with efficient ionic transport," RSC Advances, vol. 11, no. 24, pp. 14814-14823, 2021.
[83] F. Deng et al., "Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries," Journal of membrane science, vol. 491, pp. 82-89, 2015.
[84] J. Xi, X. Qiu, J. Li, X. Tang, W. Zhu, and L. Chen, "PVDF–PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity," Journal of power sources, vol. 157, no. 1, pp. 501-506, 2006.
[85] C. Tiyapiboonchaiya et al., "The zwitterion effect in high-conductivity polyelectrolyte materials," Nature materials, vol. 3, no. 1, pp. 29-32, 2004.
[86] C.-J. Lee et al., "Ionic conductivity of polyelectrolyte hydrogels," ACS applied materials & interfaces, vol. 10, no. 6, pp. 5845-5852, 2018.
[87] C. E. Owens, M. R. Fan, A. J. Hart, and G. H. McKinley, "On Oreology, the fracture and flow of “milk's favorite cookie®”," Physics of Fluids, vol. 34, no. 4, p. 043107, 2022.