簡易檢索 / 詳目顯示

研究生: 吳明遠
Wu, Ming-Yuan
論文名稱: 桁架模型理論應用於火害後鋼筋混凝土梁強度評估之研究
Truss Model for Strength Prediction of Fire Damaged Reinforced Concrete Beam
指導教授: 方一匡
Fang, I-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 97
中文關鍵詞: 火害軟化桁架模型可變傾角桁架模型
外文關鍵詞: fire damage, RA-STM, variable-angle truss model
相關次數: 點閱:107下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於將高溫引起之材料性質劣化納入軟化桁架模型(RA-STM)與可變傾角桁架模型(variable-angle truss model)之中,據此評估鋼筋混凝土梁在火害後的容許剪力與撓曲強度之衰減。
    在常溫下,對於a/d≧2.5的梁,兩種桁架模式都能合理預測梁之剪力強度,可變傾角桁架模型假設混凝土斜壓桿之角度α需介於30°至45°之間,分析結果與試驗值之比較皆屬合理,但以接近30°為佳。對於2.0≦a/d≦2.5的梁,軟化桁架模型預測之剪力強度會有稍為高估的現象,以可變傾角桁架模型分析時,傾斜角接近30°時結果會較準確。在溫度400℃以內的混凝土抗壓強度所對應之應變ε0增加趨勢並不明顯,經分析及驗證結果,將兩種桁架模型延伸至梁火害後剪力與撓曲破壞強度預測,以前人試驗之11支試體印證分析,皆有不錯的結果。本研究並模擬實尺寸鋼筋混凝土梁柱複合構件,針對梁的部分進行火害後強度分析。在加載外力維持不變的情況下,RA-STM分析結果顯示負彎矩區之撓曲與剪力強度衰減較正彎矩區為嚴重,若於火害後進行破壞試驗,RA-STM與可變傾角桁架模型兩法預測之破壞值相當接近。

    The purpose of this study is to incorporate the residual mechanical properties of fire damaged concrete and steel into the rotating-angle softened truss model (RA-STM) and variable-angle truss model for the prediction of shear and flexural strengths of reinforced concrete beams after fire exposure.
    Both models can reasonably predict the shear strengths for beams with span-to-depth ratio a/d≧2.5 under room temperature, within the orientations of diagonal strut between 30 degree and 45 degree. The RA-STM slightly over estimated shear strengths of beams with 2.0≦a/d≦2.5. The variable-angle truss model, assuming the inclined angle of diagonal strut of 30 deg, gives a good agreement with the test results. The compressive strain ε0 corresponding to peak strength of concrete subjected to fire test less than 400℃ did not increase significantly. Applying these two models to predict the shear and bending strength of fire damaged concrete beams, good agreements were found between the analytical and experimental results.
    The full-scale reinforced concrete beam-column assemblage specimens were employed to assess the strengths after fire damage. Analytical results of RA-STM theory show that specimen under the constant applied load exhibits greater shear and bending strength deterioration in the hogging region than in the sagging region. After fire testing, the strengths predicted by the RA-STM and the variable-angle truss model are very close.

    摘要...................I Abstract...............II 誌謝...................III 目錄...................IV 表目錄.................VII 圖目錄.................VIII 符號表.................XI 第一章 緒論 1-1 研究背景與目的...............1 1-2 研究方法.....................1 第二章 文獻回顧 2-1 前言........................................2 2-2 材料火害後之力學性質........................3 2-2-1 鋼筋.................................3 2-2-2 普通混凝土...........................4 2-2-3 高強度混凝土.........................7 2-3 桁架模型理論................................9 2-3-1 發展背景.............................9 2-3-2 桁架理論於長梁剪力強度分析之應用.....14 2-4 梁構件火害後相關研究........................17 2-4-1 文獻【25】...........................17 2-4-2 文獻【26】...........................18 2-4-3 文獻【27】...........................19 第三章 理論分析 3-1 前言......................................................21 3-2 軟化桁架模型於火害後強度評估之應用........................23 3-3 可變傾角桁架模型於火害後強度評估之應用....................26 3-3-1 常溫下預測梁之破壞剪力強度.........................26 3-3-2 鋼筋混凝土梁火害後強度之評估.......................30 第四章 分析結果與討論 4-1 模型預測值與前人試驗成果之比較............................31 4-1-1 與G. T. G. Mohamedbhai【25】試驗成果之比較.........31 4-1-2 與陳舜田【27】試驗成果之比較.......................32 4-2 實尺寸梁柱複合構件模擬預測................................34 4-2-1 試體條件...........................................34 4-2-2 熱分佈與平均溫度計算...............................35 4-2-3 模擬結果與討論.....................................36 4-2-3-1 載重固定下之火害後評估......................36 4-2-3-2 火害後加載破壞試驗..........................38 第五章 結論與建議 5-1 結論..................40 5-2 建議..................41 參考文獻...................93 附錄A...................... A-1 附錄B...................... B-1 附錄C...................... C-1 附錄D...................... D-1

    1. European Committee,“Eurocode 2:Design of concrete structures - Part 1-2:General rules - Structural fire design,”ENV 1992-1-2:1995.
    2. Edwards W. T., and Gamble, W. L., “Strength of Grade 60 Reinforcing Bars After Exposure to Fire Temperatures,” Concrete International, pp. 17~19, October 1986.
    3. 林英俊、陳舜田、劉靖國,「高強度混凝土梁火害後撓曲行為之研究」,NSC81-0410-E011-09,國科會專題研究計畫報告,1992。
    4. Abrams M. S., “Compressive Strength of Concrete at Tempertures to 1600℉,” Tempertures and Concrete, ACI Special Publication SP-25, pp.33-58, 1968.
    5. Lie, T. T., Rowe, T. T., and Lin, T. D., “Residual Strength of Fire Exposed Reinforced Concrete Columns,” ACI Special Publication SP-92, 1987.
    6. Schneider, U., and Haksever, A., “Bestimmung der Aguivalenten Brandauer von Statisch Bestimmt Gelagerten Stahlbetonbalken bei Naturlichen Branden,” Bericht des Instituts fur Baustoffkunde und Stahlbeton bau der Technischen Universit at Braunschweig, 1976.
    7. 陳俊嘉,「火害後鋼筋混凝土短梁中之斜壓桿件的有效抗壓係數研究」,國立成功大學土木研究所碩士論文(指導老師:方一匡教授),2005。
    8. Wu, B., Su, X. P., Li, H., and Yuan, J., “Effect of High Temperature on Residual Mechanical Properties of Confined and Unconfined High-Strength Concrete,” ACI Materials Journal, Vol. 99, No. 4, pp. 399-407, July-August 2002.
    9. Ritter, W., “The Hennebique Design Method (Die Bauweise Hennebique),” Schweizerische Bauzeitung, Vol. 33, No. 7, pp.59-61, February, 1899.
    10. Mörsch, E., Concrete-Steel Construction, Translation of the 3rd German Edition by E. P. Goodrich, McGraw-Hill Book Co., New York, 1909, 368 pp.
    11. Collins, M. P., and Mitchell, D., “Shear and Torsion Design of Prestressed and Non-Prestressed Concrete Beams,” PCI Journal, Vol. 25, No. 5, pp. 32-100, 1980.
    12. Vecchio, F. J., and Collins, M. P., “Modified Compression Field Theory for Reinforced Concrete Element Subjected to Shear,” ACI Journal, Proceedings Vol. 83, No. 2, pp. 219-231, March-April 1986.
    13. Schlaich, J., Schäfer, K., and Jennewein, M., “Toward a Consistent Design of Reinforced Concrete Structures,” PCI Journal, Vol. 25, No. 3, pp. 74-150, May-June 1987.
    14. Marti, P., “Basic Tools of Reinforced Concrete Beam Design,” ACI Structural Journal, Vol. 82, No. 1, pp. 46-56, 1985.
    15. Marti, P., “Truss Model in Detailing,” Concrete Interational, Vol. 7, No. 12, pp. 66-73, 1985.
    16. Hsu, T. T. C., “Nonlinear Analysis of Concrete Membrane Elements,” ACI Structural Journal, Vol. 88, No. 5, September-October 1991.
    17. Pang, X. B., and Hsu, T. T. C., “Behavior of Reinforced Concrete Membrance Elements in Shear,” ACI Structural Journal, Vol. 92, No. 6, pp.665-679, Nov.-Dec. 1995.
    18. Vecchio, F., and Collins, M. P., “Stress-Strain Characteristics of Reinforced Concrete in Pure Shear,” IABSE Colloquium, Advanced Mechanics of Reinforced Concrete, Delft, Final Report, International Association for Bridge and Structural Engineering, Zurich, Switzerland, pp. 211-225, 1981.
    19. Ramirez, J. A., and Breen, J. E., “Evaluation of Modified Truss-Model Approach for Beams in Shear,” ACI Structural Journal, Vol. 88, No. 5, September-October 1991.
    20. Kong, P. Y. L., and Range, B. V., “Shear Strength of High-Permance Concrete Beams,” ACI Structural Journal, Vol. 95, No. 6, pp.677-688, Nov.-Dec. 1998.
    21. Vecchio, F. J., and Collins, M. P., “Compression Response of Cracked Reinforced Concrete,” Journal of Structural Engineering, Vol. 119, No. 12, pp. 3590-3610, Dec. 1993.
    22. Collins, M. P., and Porasz, A., “Shear Strength for High Strength Concrete,” Bulletin No. 193, Design Aspects of High Strength Concrete, Comite Euro-Internatiomal du Beton (CEB), 1989, pp 75-83
    23. Collins, M. P., Mitchell, D., Adebar, P., and Vecchio, F. J., “A General Shear Design Method,” ACI Structural Journal, V. 93, No. 1, Jan.-Feb. 1996, pp. 36-45
    24. Carrasquillo, R. L., Nilson, A. H., and Slate, F. O., “Properties of High-Strength Concrete Subject to Short-Term Loads,” ACI Journal, Proceedings V. 78, No. 3, May-June 1981, pp. 171-178
    25. Mohamedbhai, G. T. G., “Residual Strength of Reinforced Concrete Members Subjected to Elevated Temperatures,” Proceedings of the Institution of Civil Engineers, Part 2, 73, pp. 407-420, June 1982.
    26. Khan, M. R., and Royles, R., “Post Heat Exposure Behaviour of Reinforced Concrete Beams,” Magazine of Concrete Research, Vol. 38, No. 135, pp-59-66, June 1986.
    27. 陳舜田、蔡東宏,「火害後鋼筋混凝土梁之延性」,NSC86-2211-E011-010,國科會專題研究計畫報告,1997。
    28. Hsu, T. T. C., “Unified Theory of Reinforced Concrete,”CRC Press, Inc., 1993
    29. ACI Committee 318, “ACI 318-05:Building Code Requirements for Reinforced Concrete and Commentary,” American Concrete Institute, 2005.
    30. Johnson, M. K., and Ramirez, M. P., “Minimum Shear Reinforcement in Beams with Higher Strength Concrete,” ACI Structural Journal, Vol. 86, No. 4, pp. 376-382, July-August 1989.
    31. Elzanaty, A. H., Nilson, A. H., and Slate, F. O., “Shear Capacity of Reinforced Concrete Beams Using High-Strength Concrete,” ACI Journal, Proceedings Vol. 83, No. 2, pp. 290-296, March-April 1986.
    32. Xie, Y., Ahmad, S. H., Yu, T., Hino, S., and Chung, W., “Shear Ductility of Reinforced Concrete Beam of Normal and High-Streng Concrete,” ACI Structural Journal, Vol. 91, No. 2, pp. 140-149, March-April 1994.
    33. Roller, J. J. and Russell, H. G., “Shear Design of High and Normal Streng Concrete Beams with Web Reinforcement,” ACI Structural Journal, Vol. 89, No. 6, pp. 658-664, November-December 1992.
    34. Schäfer, K., “Strut-and-Tie Models for the Design of Structural Concrete.” Note of Workshop, Dept. of Civil Engineering, National Cheng Kung Univ., Tainan, Taiwan, 1996.
    35. Shin, S. W., Lee, K. S., Moon, J. L., and Ghosh, S. K., “Shear Strength of High-Strength Concrete Beams with Shear Span-to-Depth Ratios between 1.5 and 2.5,” ACI Structural Journal, Vol. 96, No. 4, pp. 549-557, July-August 1999.
    36. 賴政忠,「鋼筋混凝土梁柱構件於火害中強度評估之研究」,國立成功大學土木研究所碩士論文(指導老師:方一匡教授),2006。
    37. Ellingwood, B., and Shaver, J., “ Effects of Fire Reinforced Concrete Members, ” Journal of the Structural Division, ASCE, V.106, pp. 2151-2166, Nov., 1980.
    38. Lie, T. T., Lin, T. D., Allen, D. E., and Abrams, M. S., “ Fire Resistance of Reinforced Concrete Columns, ” National Research Council of Canada, DBR Paper No. 1167, NRCC 23065, 1984.

    下載圖示 校內:2008-08-08公開
    校外:2008-08-08公開
    QR CODE