簡易檢索 / 詳目顯示

研究生: 吳柏賢
Wu, Bo-Sian
論文名稱: 雷射刻紋法引發矽晶圓表面隆起效應之研究
Study of the silicon wafer hump effects induced by pulsed laser texturing method
指導教授: 林震銘
Lin, Jehnming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 127
中文關鍵詞: 隆起雷射刻紋矽晶圓
外文關鍵詞: Hump, Laser texturing, Silicon wafer
相關次數: 點閱:75下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究目的是探討雷射刻紋所引發矽晶圓表面隆起效應,針對脈衝雷射加熱矽晶圓,以數值分析以及實驗方法進行研究,並使用表面張力討論表面隆起。在數值分析方面,考慮雷射刻紋時所造成熔化流體流動,在模擬方面分為兩部分,第一部分分析雷射熔化時所造成的流體流動,第二部份使用流體體積法(VOF)計算雷射刻紋所造成的自由表面起伏,進而得到表面隆起。而實驗的部份則使用Nd-YAG脈衝雷射線熱源加工矽晶圓,並使用粗度儀量測加工表面,討論不同雷射脈衝時間以及雷射功率下的隆起形貌,並藉由數值分析的結果討論雷射參數對隆起效應的影響。由本實驗條件下的結果顯示,在雷射功率7.3 W到20.6 W之間,越大的雷射功率會有越高的表面隆起。在加工速度300 mm/s之內,隆起位置會朝向溫度梯度較大的方向偏移。

    The surface hump of the silicon wafer induced by surface tension in pulsed laser texturing method has been investigated numerically and experimentally in this study.

    In the numerical simulation, the silicon substrate was treated as fluid flow and heated in laser texturing. Both the velocity field induced by laser melting and the silicon surface hump caused by the surface tension have been solved with/without the volume of fluid method (VOF) in the FLUENT software.

    In the experiment, a line-shaped Nd:YAG pulsed laser was used to melt the silicon wafer. The surface profile of the silicon wafer has been measured. The surface hump produced by various pulse durations and power intensities have been inspected. The process parameters affecting the surface hump have been discussed.

    According to the present study with the laser power from 7.3 to 20.6 W, the hump height is proportional to the laser power. Furthermore, the tendency of the hump peak will move towards the direction with a high temperature gradient at a table velocity below 300 mm/s. There is a good agreement between the numerical simulation and the experimental measurement of the hump profiles induced in the laser texturing method.

    中文摘要………………………………………………………I 英文摘要………………………………………………………II 誌謝……………………………………………………………III 目錄……………………………………………………………IV 表目錄…………………………………………………………VIII 圖目錄…………………………………………………………X 符號說明………………………………………………………XVII 第一章 緒論…………………………………………………1 1-1 研究目的………………………………………………1 1-2 文獻回顧………………………………………………3 1-2.1 雷射引發表面熔化流動相關研究…………………3 1-2.2 雷射熔化引發表面隆起之刻紋研究………………4 1-3 本文架構………………………………………………7 第二章 相關理論……………………………………………8 2-1 表面張力與製程現象…………………………………8 2-1.1 表面張力……………………………………………8 2-1.2 雷射刻紋製程現象…………………………………13 2-2 數值理論………………………………………………18 2-2.1 控制方程式…………………………………………18 2-2.2 多相流自由表面的計算……………………………19 2-2.2.1 多相流連續方程式………………………………20 2-2.2.2 多相流的動量與能量方程式……………………20 2-2.2.3 格點內的物理性質………………………………21 2-2.2.4 自由表面張力計算………………………………22 2-2.2.5 自由表面VOF的數值方法………………………23 2-2.3 相變換模式…………………………………………25 2-2.4 壁面熱傳邊界………………………………………27 2-2.5 表面的熱毛細應力計算……………………………27 2-3 數值分析軟體Fluent及計算流程簡介………………28 第三章 數值分析結果………………………………………30 3-1 物理模型與假設………………………………………30 3-2 物理性質與表面張力對熔化流體流動之影響………31 3-2.1 物理性質……………………………………………31 3-2.2 表面張力對熔化流體流動之影響…………………33 3-2.2.1 雷射加熱固定底材………………………………34 3-2.2.2 雷射加熱流動底材………………………………46 3-3 考慮自由表面模型之計算……………………………59 3-3.1 雷射加工固定底材幾何範圍………………………59 3-3.2 雷射加工固定底材的格點建立與邊界條件………60 3-3.3 雷射加工流動底材幾何範圍………………………61 3-3.4 雷射加工流動底材的格點建立與邊界條件………61 3-4 自由表面模擬結果……………………………………63 3-4.1 雷射加工固定底材之計算結果……………………63 3-4.2 雷射加工流動底材之計算結果……………………69 3-5 不同深度下的溫度分佈探討…………………………76 3-6 結果與討論……………………………………………78 第四章 雷射刻紋實驗………………………………………80 4-1 線熱源雷射刻紋實驗…………………………………80 4-1.1 實驗設備及配置……………………………………80 4-1.2 雷射刻紋表面隆起參數定義………………………83 4-1.3 實驗方法及條件……………………………………85 4-1.4 實驗結果觀察………………………………………86 4-1.4.1 雷射脈衝時間3 ms加工結果觀察………………86 4-1.4.2 雷射脈衝時間5 ms加工結果觀察………………91 4-1.4.3 雷射脈衝時間8 ms加工結果觀察………………96 4-1.4.4 雷射脈衝時間10 ms加工結果觀察……………100 4-1.5 雷射功率與隆起高度之關係………………………105 4-1.6 雷射加工速度與隆起高度之關係…………………107 4-2 文獻實驗結果比較……………………………………108 4-3 結果與討論……………………………………………109 第五章 綜合討論及建議……………………………………111 5-1 綜合討論………………………………………………111 5-2 建議及未來發展………………………………………115 參考文獻……………………………………………………117 附錄A 數值模擬之速度條件………………………………122 附錄B 加工平台速度測試…………………………………124 自述…………………………………………………………127

    [1]丁勝懋,雷射工程導論,中央圖書出版社,2006
    [2]Lei Y.P., Murakawa H., Shi Y.W., Li X.Y.1, “Numerical analysis of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting”, Computational Materials Science, v 21, n 3, p 276-290, 2001
    [3]Abbott M., Cotter J., “Optical and electrical properties of laser texturing for high-efficiency solar cells”, Progress in Photovoltaics: Research and Applications, v 14, n 3, p 225-235, 2006
    [4]Cline H.E., Anthony T.R., “Heat treating and melting material with a scanning laser or electron beam.”, Journal of Applied Physics, v 48, n 9, p 3895-3900, 1977
    [5]Ravindran K., Srinivasan J., Marathe A.G., “Finite element solution of surface-tension driven flows in laser surface-melting”,Mechanics Research Communications, v 22,n 3, p 297-304,1995
    [6]Han L., Liou F. W., Musti S., “Thermal behavior and geometry model of melt pool in laser material process”, Journal of Heat Transfer, v 127, n 9, p 1005-1014, 2005
    [7]Anthony T. R., Cline H. E., “Surface rippling induced by surface-tension gradients during laser surface melting and alloying”, Journal of Applied Physics, v 48,n 9, p3888-3894,1977
    [8]Cline H. E., “Surface rippling induced in thin films by a scanning laser”, Journal of Applied Physics, v 52, n 1,p 443-448,1981
    [9]Wee T. S., Lu Y. F., Chim W. K., “Experimental and numerical investigation of the surface reliefs formed on a moving silicon substrate by pulses of a Gaussian laser”, Materials Chemistry and Physics, v 54, n 1-3, Jul, p 205-209,1998
    [10]Park H. K., Kerstens P. J. M., Baumgart P., Tam A. C., “Issues on high-speed laser zone texturing of magnetic disk substrates with improved quality”, IEEE Transactions on Magnetics, v 34, n 4 pt 1, p 1807-1809, 1998
    [11]吳志剛,雷射刻紋突點對硬碟碟片磨潤性質之影響,國立成功大學機械工程研究所碩士論文,1998
    [12]Tam A. C., Pour K., Nguyen T., Krajnovich D. and Baiumgart P., “Experimental and Theoretical Studies of Bump Formation During Laser Texturing of Ni-P Disk Substrates”, IEEE Transactions On Magnetics, VOL. 32. NO. 5, P3771-3773,1996
    [13]Chen S. C., Cahill D. G., Grigoropoulos C. P., “Melting and surface deformation in pulsed laser surface micromodification of Ni-P disks”, J. Heat Transfer , p107–112, 2000
    [14]Ohmura E., Murayama R., Miyamoto I.,“Thermohydrodynamics analysis on the mechanism of bump formation in laser texturing”, Proceedings of SPIE - The International Society for Optical Engineering, v 4088, p 244-247, 2000
    [15]Chiba T., Komura R., Mori A., “Formation of micropeak array on a silicon wafer”, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, v 39, n 8, p 4803-4810, 2000
    [16]Chiba T., Komura R., Mori A., “Micropeak array in the scribe line on a wafer”, Proceedings of SPIE - The International Society for Optical Engineering, v 4088, p 389-392, 2000
    [17]陶雨台編譯,表面物理化學,千華文化集團,1988
    [18]Julian S., “Fluid flow phenomena metals processing”, Academic Press,Inc,1979
    [19]Smithells C. J. , “Metals reference book”, Butterworths, 1976
    [20]Sindo K., “Transport phenomena and materials Processing”,John wiley&sons,inc,1996
    [21]Currie1 G., “Fundamental Mechanics of Fluids”, Marcel Dekker
    ,Inc,2003
    [22]Hirt C.W. and Nichols B.D., “Volume of fluid(VOF) method for the dynamics of free boundaries”, Journal of computational physical,1981,Vol.39,pp201-225
    [23]FLUENT6.2 User Guide, Fluent Inc,2003.
    [24]Shackelford J., Alexander W., “CRC materials science and engineering handbook”,FL:CRC Press,2001
    [25]Brackbill J.U., Koth D.B., Zemach C., “A continuum method for modeling surface tension”, Journal of Computational Physics, Volume 100 , p335 – 354,1992
    [26]Wu S. L., Chen C. W., Hwang W. S. and Yang C. C., “Analysis for melt puddle in the planar flow casting process-A mathematical modeling study”, Appl. Math. Modelling, Vol.16 pp394-403,1992
    [27]Youngs D. L., “Time-Dependent Multi-Material Flow with Large Fluid Distortion”, In K. W. Morton and M. J. Baines, editors, Numerical Methods for Fluid Dynamics Academic Press, 1982.
    [28]Prakash C., Samond M., Singhal A.K., “A fixed grid numerical methodology for phase change problems involving a moving heat source”, Int.J.Heat MassTransfer
    ,V.30,pp2690-2694,1987
    [29]Incropera Frank P. and DeWitt David P., “Fundamentals of Heat and Mass Transfer”, forth edition, John Wiley& sons, INC, 1996
    [30]Millot F., Sarou K. V., Rifflet J. C., Vinet B. , “The surface Tension of liquid silicon at high temperature”, Materials Science and Engineering A, v 495, n 1-2, p 8-13, November, 2008
    [31]Rhim W. K., OhsakaK., “Thermophysical properties
    measurement of molten silicon by high-temperature electrostatic levitator: density, volume expansion, specific heat capacity, emissivity, surface tension and viscosity”, Journal of Crystal Growth 208 p 313-321, 2000
    [32]Zhou Z., Mukherjee S., Rhim W. K., “Measurement of
    thermophysical properties of molten silicon using an upgraded electrostatic levitator”, Journal of Crystal Growth 257 ,p350–358, 2003
    [33]Glassbrenner C. J., Slack G. A. , “Thermal
    Conductivity of Silicon and Germanium from 3 K to the Melting Point”, Physical Review, vol. 134, Issue 4A, pp.1058-1069,1964
    [34]Rubahn H.G.,“Laser applications in surface science and technology”,Wiley,1996
    [35]王佑仁,雷射線光源於玻璃切割之研究,國立成功大學機械工程研究所碩士論文,2004

    下載圖示
    2019-08-03公開
    QR CODE