| 研究生: |
陳俊瑋 Chen, Chun-Wei |
|---|---|
| 論文名稱: |
平面水池非線性方向造波之理論分析 Analytic Solution of Nonlinear Directional Wavemaker in a Wave Basin |
| 指導教授: |
李兆芳
Lee, Jaw-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 方向造波 、泰勒級數展開 、攝動法 、動量傳輸 |
| 外文關鍵詞: | directional wavemaker, perturbation method, Taylor series expansion, momentum transport |
| 相關次數: | 點閱:124 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的在對平面水池非線性方向造波問題提出二階理論解。波浪場是利用勢能波浪理論描述,所求解非線性問題則利用泰勒級數展開,配合攝動法將問題表示成第一階和第二階問題。延伸劉(2002)所提出求解斷面水槽造波理論之方法直接求解平面水池非線性方向造波理論,並且利用複數推導理論。在第二階解過程中,由於自由水面及造波板運動均為非齊性之邊界條件,因此第二階解必須分離成第二階Stokes波以及第二階自由波。
本文所提出之理論解可以降階成斷面水槽造波問題之表示式。由本文之理論指出隨著方向角度增加則振幅會隨著增大,亦表示可以更有效的造波。對於動量傳輸之問題,在 方向上之動量傳輸分量其值為零,然而在 方向上應存有一反向淨值之動量傳輸分量,可以在平面水池中產生環流之問題。當方向角度及造波衝程較小,本文理論與試驗比較可以得到很好的模擬結果。另一方面,當方向角度及衝程較大,由於實際造波機為有限寬度之造波板連續運動,因此理論解與試驗結果有明顯的差異。
In this thesis, a nonlinear directional wavemaking problem in the plane wave basin is solved analytically up to the second-order. The potential wave theory is used to describe the wave motion. Under the assumption of steady and periodic motion, the corresponding boundary-value problem is written into the first-order and the second-order problems, using the Taylor series expansion and the perturbation method on the free surface and the wavemaker boundaries. A solution method developed by Liu (2002) for the two-dimensional wavemaker problem is applied directly for the present problem, in which complex variables are used in the derivations. In the second-order solution, because of the nonhomogeneous conditions imposed on the free surface and the wavemaker, the solution has to be divided into a Stokes wave solution and a free wave solution.
The present analytic solution can be reduced into exactly the same expression for the two-dimensional wavemaker problem. The present theory indicates that with the increased directional angle the generated wave amplitudes can be increased, which means the wavemaking can be more effective. The momentum transport in the direction perpendicular to the wavemaker is null, however, in the parallel direction there is a net mass transport moves away from the wave field, which can cause circulation problem in the wave basin. The present theory compared very well with the experimental results for cases of small wave angles and wavemaker amplitudes. On the other hand, for large wavemaker motions the discrete and finite paddle sizes of the wavemaker are not negligible, large discrepancies are observed between experiments and present analytic solution.
1.Brandini, C. and Grilli, S. (2001), Modeling of Freak Wave Generation in a 3D-NWT, Proceedings of the International Offshore and Polar Engineering Conference, Vol. 3, pp. 124-131.
2.Dean, R. G. and Dalrymple, R. A. (1984), Water Wave Mechanics for Engineers and Scientists, Prentice-Hall Inc, Englewood Cliffs, New Jersey.
3.Kim, M. H. and Celebi, M. S. Kim, D. J. (1998), Fully Nonlinear Interactions of Waves with a Three-Dimensional Body in Uniform Currents, Applied Ocean Research, Vol. 20, pp. 309-321.
4.Park, J. C., Uno, Y., Sato, T., Miyata, H. and Chun, H. H. (2004), Numerical Reproduction of Fully Nonlinear Multi-Directional Waves by a Viscous 3D Numerical Wave Tank, Ocean Engineering, Vol. 31, pp. 1549-1565.
5.Schäffer, H. A. and Steenberg, C. M. (2003), Second-order wavemaker theory for multidirectional waves, Ocean Engineering, Vol. 30, pp.1203-1231.
6.Sulisz, W. and Hudspeth, R. T. (1993a), Complete Second-Order Solution for Water Waves Generated in Wave Flumes, J. Fluids and Structures, Vol. 7, pp. 253-268.
7.Sulisz, W. and Hudspeth, R. T. (1993b), Second-Order Wave Loads on Planar Wavemakers, J. Waterway, Port, Coastal and Ocean Engineering, Vol.119, pp. 521-536.
8.Takayama, T. (1984), Theory of Oblique Waves Generated by Serpent-Type Wave-Maker, Coastal Engineering in Japan, Vol. 27, pp.1-19.
9.Wu, Y. C. and Dalrymple, R. A. (1987), Analysis of Wave Fields Generated by a Directional Wavemaker, Ocean Engineering, Vol. 11, pp.241-261.
10.王豪偉、黃清哲和吳京(2004),三維數值黏性波浪水槽之模擬,第二十六屆海洋工程研討會議論文集,101-108頁。
11.尹彰、周宗仁、林炤圭、黃偉柏(1998),平面造波水池之特性探討,第二十屆海洋工程研討會議論文集,95-102頁。
12.周宗仁、尹彰、林炤圭、黃偉柏(1998),有關平面造波水槽內波場方向分佈函數的探討,第二十屆海洋工程研討會議論文集,80-86頁。
13.周宗仁、林騰威、翁文凱(2004),三維數值水槽之開發與研究(Ⅰ)—理論推導與平行計算運用,第二十六屆海洋工程研討會議論文集,109-115頁。
14.李兆芳,劉正祺,藍元志(1994),直擺式造波二階波浪特性,第十六屆海洋工程研討會議論文集,A60-A83頁。
15.劉正琪(2002),波浪通過潛堤之二階理論解析,國立成功大學水利及海洋工程研究所,博士論文。
16.劉宗龍、雷清宇和黃智偉(2004),數值波浪水槽之發展與應用,第二十六屆海洋工程研討會議專題研究計畫,25-32頁。