簡易檢索 / 詳目顯示

研究生: 石穎中
Shih, Ying-Chung
論文名稱: 1氫-1,2,4-三唑在二氧化鈦表面上的吸附與反應
Adsorption and Reaction of 1H-1,2,4-Triazole on Powdered TiO2
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 75
中文關鍵詞: 二氧化鈦1氫-1,2,4-三唑1,2,4-三氮唑-3-羧酸傅立葉轉換紅外光譜儀
外文關鍵詞: TiO2, 1H-1,2,4-triazole, 1,2,4-triazole-3-carboxylic acid, FT-IR
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用傅立葉轉換紅外光譜儀(FT-IR)研究1氫-1,2,4-三唑(1H-1,2,4-triazole)與其衍生物1,2,4-三氮唑-3-羧酸(1,2,4-triazole-3-carboxylic acid, TCA)在二氧化鈦粉末表面上的吸附與反應。1H-1,2,4-triazole在35 °C下主要的吸附結構是以2號氮與表面的鈦原子鍵結,並以1號氮上的N–H與表面上的氧原子形成氫鍵。在真空環境下,1H-1,2,4-triazole加熱至300 °C以上三唑環會先經過一次質子轉移,接著斷裂1N–2N與3N–4C鍵,破環產生–NCO (2206 cm-1)、HNCNH (2069 cm-1)與–N3 (2011 cm-1)。在氧氣存在的環境下,除了–NCO與–N3以外,1H-1,2,4-triazole在加熱時還會產生HCOOH(a) (1673 cm-1)、HCOO(a) (1357、1560、2868、2950 cm-1)、–NO–(1176 cm-1)、CO¬2 (2343 cm-1)與CO (2143 cm-1)。在使用325 nm的紫外光照射後則沒有產生反應。TCA在二氧化鈦表面上的反應與1H-1,2,4-triazole相似。

    The adsorption, thermal reaction and photoreaction of 1H-1,2,4-triazole and its derivative of 1,2,4-triazole-3-carboxylic acid (TCA) on powdered TiO2 have been studied by using Fourier-transform infrared spectroscopy (FT-IR). 1H-1,2,4-triazole is molecularly adsorbed on TiO2 surface at 35 °C, with a hydrogen bond of N–H…O. The 1H-1,2,4-triazole is stable up to 250 °C. The triazole ring starts to decompose at ~300 °C, forming isocyanate (–NCO), carbodiimide (–NCNH) and azide (–N3). Besides –NCO and –N3, the 1H-1,2,4-triazole reacts to form formic acid (HCOOH), formate (HCOO), –NO, CO¬2 and CO in the presence of oxygen. There is no reaction when 1H-1,2,4-triazole/TiO2 is exposed to the ultraviolet light at 325 nm. The reaction behavior of TCA on the TiO2 surface is similar to 1H-1,2,4-triazole.

    第一章 緒論 1 1-1 表面科學 1 1-1-1 表面科學的發展 1 1-1-2 表面的厚度 2 1-1-3 表面吸附 2 1-1-4 表面催化 3 1-2 二氧化鈦晶體結構 5 1-2-1 二氧化鈦表面 6 1-3 二氧化鈦光催化 7 1-3-1 二氧化鈦光催化原理 8 1-4 研究動機 10 第二章 實驗系統與方法 12 2-1 實驗系統概述 12 2-2-1 儀器 13 2-1-2 藥品 14 2-2 傅立葉轉換紅外光譜 15 2-2-1 紅外光源 15 2-2-2 偵檢器 15 2-3 紫外光源 16 2-4 真空系統 16 2-4-1 壓力測量 17 2-4-2 紅外光譜反應槽設計 17 2-5 二氧化鈦/鎢網的製備 20 2-5-1 二氧化鈦/鎢網在紅外光譜反應槽的擺放位相 20 2-5-2 二氧化鈦/鎢網的前處理 21 2-6 藥品的製備及處理 22 2-7 理論計算模型 23 2-7-1 Gaussian 09 23 2-7-2 Material Studio Dmol3 23 第三章 結果與討論 25 3-1 1H-1,2,4-triazole在TiO2表面上的吸附與反應 25 3-1-1 1H-1,2,4-triazole在TiO2表面上的吸附 25 3-1-2 真空環境下1H-1,2,4-triazole在TiO2表面上的熱反應 27 3-1-3 氧氣存在環境下1H-1,2,4-triazole在TiO2表面上的熱反應 31 3-1-4 1H-1,2,4-triazole在TiO2表面上的光反應 33 3-2 1,2,4-triazole-3-carboxylic acid在TiO2表面上的吸附與反應 34 3-2-1 1,2,4-triazole-3-carboxylic acid在TiO2表面上的吸附與真空環境熱反應 34 3-2-2氧氣存在環境下1,2,4-triazole-3-carboxylic acid在TiO2表面上的熱反應 38 3-2-3 1,2,4-triazole-3-carboxylic acid在TiO2表面上的光反應 38 第四章 結論 63 參考資料 64 附錄 71

    [1] Surface Science-Wilipedia. https://en.wikipedia.org/wiki/Surface_Science (accessed May 29, 2018)
    [2] G. A. Somorjai. Introduction to Surface Chemistry and Catalysis (1994) John Wiley & Sons, Inc. Hoboken.
    [3] H. Over, R. Schomäcker. What Makes a Good Catalyst for the Deacon Process? ACS Catalysis 3 (2013) 1034-1046.
    [4] A. J. Ihde. The Development of Modern Chemistry. (1970) Dover Publications, Inc. New York.
    [5] M. Appl. Ammonia, 2. Production Process, Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed. (2005) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
    [6] Z. Wang. Comprehensive Organic Name Reactions and Reagents (2010) John Wiley & Sons, Inc. Hoboken.
    [7] I. Langmuir. The Adsorption of Gases on Plane Surface of Glass, Mica and Platinum, The Research Laboratory of The General Electric Company. 40 (1918) 1361-1402.
    [8] I. Langmuir. Surface Chemistry. Chemical Reviews 13 (1933) 147-191.
    [9] G. Ertl. Reaction at Surfaces: From Atoms to Complexity (Nobel Lecture) Angewandte Chemie International Edition 48 (2008) 3524-3535.
    [10] S. Brunauer, P. H. Emmett, and E. Teller. Adsorption of Gases in Multimolecular Layers Journal of the American Chemical Society 60 (1938) 309-319.
    [11] S. S. Zumdahl, D. J. DeCoste. Chemical Principles 8th ed. (2016) Cengage Learning. Boston.
    [12] U. Diebold. The Surface Science of Titanium Dioxide. Surface Science Reports 48 (2003) 53-229.
    [13] A. L. Linsebigler, G. Lu, J. T. Yates Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews 95 (1995) 735-758
    [14] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura. Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. Journal of Catalysis 203 (2001) 82-86.
    [15] H. Perron, C. Domain, J. Roques, R. Drot, E. Simoni, H. Catalette. Optimisation of Accurate Rutile TiO2 (110), (100), (101) and (001) Surface Models from Periodic DFT Calculations. Theoretical Chemistry Accounts 117 (2007) 565-574.
    [16] M. Lazzeri, A. Vittadini, A. Selloni. Structure and Energetics of Stoichiometric TiO2 Anatase Surface. Physical Review B 63 (2001) 155409.
    [17] Z. Futera, N. J. English. Exploring Rutile (110) and Anatase (101) TiO2 Water Interfaces by Reactive Force-Field Simulations. The Journal Physical Chemistry C 121 (2017) 6701-6711.
    [18] A. Fujishima, K. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238 (1972) 37-38.
    [19] K. Nakata, A. Fujishima. TiO2 Photocatalysis: Design and Applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13 (2012) 169-189.
    [20] A. Fernández, G. Lassaletta, V. M. Jiménez, A. Justo, A. R. González-Elipe, J. M. Herrmann, H. Tahiri, Y. Ait-Ichou. Preparation and Characterization of TiO2 Photocatalysts Supported on Various Rigid Supports (Glass, Quartz and Stainless Steel). Comparative Studies of Photocatalytic Activity in Water Purification. Applied Catalysis B: Environmental 7 (1995) 49-63.
    [21] C. H. Ao, S. C. Lee. Indoor Air Ourification by Photocatalyst TiO2 Immobilized on an Activated Carbon Filter Installed in an Air Cleaner. Chemical Engineering Science 60 (2005) 103-109.
    [22] B. O’Regan, M. Gräzel. A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films. Nature 353 (1991) 737-740.
    [23] M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy. A Review and Recent Developments in Photocatalytic Water-splitting Using TiO2 for Hydrogen Production. Renewable and Sustainable Energy Reviews 11 (2007) 401-425.
    [24] A. Fujishima, X. Zhang, D. A. Tryk. TiO2 Photocatalysis and Related Surface Phenomena. Surface Science Reports 63 (2008) 515-582.
    [25] S. Sakthivel, M. Vshankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, V. Murugesan. Enhancement of Photocatalytic Activity by Metal Deposition: Characterisation and Photonic Efficiency of Pt, Au and Pd Deposited on TiO2 Catalyst. Water Research 38 (2004) 3001-3008.
    [26] G.Tian, Y. Chen, W. Zhou, K. Pan, C. Tian, X. Huang, H. Fu. 3D Hierarchical Flower-like TiO2 Nanostructure: Morphology Control and its
    Photocatalytic Property. CrystEngComm 13 (2011) 2994-3000.
    [27] X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng. Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. Journal of the American Chemical Society 131 (2009) 3152-3153.
    [28] X. Chen, C. Burda. The Electronic Origin of the Visible-Light Absorption
    Properties of C-, N- and S-Doped TiO2 Nanomaterials. Journal of the American Chemical Society 130 (2008) 5018-5019.
    [29] D. R. Baker, P. V. Kamat. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures. Advanded Functional Materials 19 (2009) 805-811.
    [30] A. A. Ikizler, C. B. Johansson, O. Bekircan, C. Celik. Synthesis and Atibacterial Ativities of some 1,2,4-triazole Drivatives. Acta Poloniae Pharmaceutica 56 (1999) 283-288.
    [31] S. C. Holm, B. F. Straub. Synthesis of N-Substituted 1,2,4-Triazoles: A Review. Organic Preparations and Procedures International 43 (2011) 319-347.
    [32] K. Sztanke, T. Tuzimski, J. Rrzymowska, K. Pasternak, M. Kandefer-Szerszeń. Synthesis, Determination of the Lipophilicity, Anticancer and Antimicrobial Properties of some Fused 1,2,4-triazole Derivatives. European Journal of Medicinal Chemistry 43 (2008) 404-419.
    [33] P. G. Fox, P. A. Bradley. 1 : 2 : 4-triazole as a corrosion inhibitor for copper. Corrosion Science 20 (1980) 643-649.
    [34] J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, K. Nagai. 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices. Japanese Journal of Applied Physics, 32 (1993) 917-920.
    [35] E. Orselli, G. S. Kottas, A. E. Konradsson, P. Coppo, R. Fröhlich, L. De Cola, A. van Dijken, M. Büchel, H. Börner. Blue-Emitting Iridium Complexes with Substituted 1,2,4-Triazole Ligands: Synthesis, Photophysics, and Devices. Inorganic Chemistry 46 (2007) 11082-11093.
    [36] [36] D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of Insrumental Analysis 6th ed. Thomson Higher Education, (2007) Belmont.
    [37] [37] P. Norton. HgCdTe Infrared Detectors. Opto-Electronics Review 10 (2002) 159-174.
    [38] J. Fan, J. T. Yates Jr. Infrared Study of the Oxidation of Hexafluoropropene on TiO2 The Journal of Physical Chemistry, 98 (1994) 10621-10627.
    [39] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases, Journal of Catalysis, 203 (2001) 82-86.
    [40] C. N. Rusu, J. T. Yates Jr. Photochemistry of NO Chemisorbed on TiO2(110) and TiO2 Powders. The Journal of Physical Chemistry B 104 (2000) 1729-1737.
    [41] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc. (2016) Wallingford CT.
    [42] A. D. Becke. Density-functional thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics 98 (1993) 5648-5652.
    [43] C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B 37 (1988) 785-789.
    [44] J. P. Perdew, K. Burke, M. Ernzerhof Generalized Gradient Approximation Made Simple. Physical Review Letters 77 (1996) 3865-3868.
    [45] P. Jimenez, M. V. Roux, C. Turrion, Thermochemical Properties of N-heterocyclic Compounds II. Enthalpies of Combustion, Vapour Pressures, Enthalpies of Sublimation, and Enthalpies of Formation of 1,2,4-triazole and Benzotriazole. The Journal of Chemical Thermodynamics 21 (1989) 759-764.
    [46] D.Bougeard, N. Le Calve, B. Saint Roch, and A. Novak. 1,2,4-Tirazole: Vibrational Spectra, Normal Coordinate Calculations, and Hydrogen Bonding. The Journal of Chemical Physics 64 (1976) 5152-5164.
    [47] F. Billes, H, Endredi, G. Keresztury. Vibrational Spectroscopy of Triazoles and Tetrazole. Journal of Molecular Structure (Theochem) 530 (2000) 183-200.
    [48] S. Tagomori, Y. Kuwahara, H. Masamoto, M. Shigematsu, W. Kowhakul. Influence of Substituent on Thermal Decomposition of 1H-1,2,4-Triazole. 4th International Conference on Biology, Environment and Chemistry (ICBEC), 58 (2013) 66-70.
    [49] M. Kumasaki, Y. Wada, Y. Akutsu, M. Arai, M. Tamura. A Study on Flash Pyrolysis of 1H-1,2,4-triazole. Science and Technology of Energetic Materials 62 (2001) 147-154.
    [50] W. Kowhakul, D. Inoue, Y. Nakagawa, H. Masamoto, M. Shigematsu. Thermal Decomposition Mechanisms of 1H-1,2,4-Triazole Derivatives: A Theoretical Study. Journal of Loss Prevention in the Process Industries 50 (2017) 37-54.
    [51] G. da Silva, J. W. Bozzelli. Retro-[3+2]-Cycloaddition Reactions in the Decomposition of Five-Membered Nitrogen-Containing Heterocycles. The Journal of Organic Chemistry 73 (2008) 1343-1353.
    [52] J. Zhuang, C. N. Rusu, J. T. Yates Jr. Adsorption and Photooxidation of CH3CN on TiO2. The Journal of Physical Chemistry B 103 (1999) 6957-6967.
    [53] F. Solymosi, L. Völgyesi, J. Sárkány. The Effect of the Support on the Formation and Stability of Surface Isocyanate on Platinum. Journal of Catalysis 54 (1978) 336-344.
    [54] S. Kameoka, T. Chafik, Y. Ukisu, T. Miyadera. Role of Organic Nitro Compounds in Selective Reduction of NOx with Ethanol over Different Supported Silver Catalysts. Catalysis Letters 51 (1998) 11-14.
    [55] F. Solymosi, J. Raskó. An Infrared Study on the Formation of Isocyanate in the NO + CO Reaction on Supported Ir Catalyst Journal of Catalysis 63 (1980) 217-225.
    [56] B. A. Morrow, W. N. Sont, A. St. Onge. The Reaction between NO and CO on Silica-supported Nickel. Journal of Catalysis 62 (1980) 304-315.
    [57] H. Celio, K. Mudalige, P. Mills, M. Trenary. Formation of Isocyanate on Cu(100) from the Oxidation of Cyanogen and from the Decomposition of Isocyanic Acid. Surface Science 394 (1997) 168-173.
    [58] C.-C. Chuang, W.-C. Wu, M.-X. Lee, J.-L. Lin. Adsorption and Photochemistry of CH3CN and CH3CONH2 on Powdered TiO2. Physical Chemistry Chemical Physics 2 (2000) 3877-3882.
    [59] W.-C. Wu, L.-F. Liao, C.-C. Chung, J.-L. Lin. Adsorption and Photooxidation of Foramide on Powdered TiO2. Journal of Catalysis 195 (2000) 416-419.
    [60] L.-F. Liao, W.-C. Wu, C.-C. Chuang, J.-L. Lin. FTIR Study of Adsorption and Reactions of Methylamine on Powdered TiO2. The Journal of Physical Chemistry B 105 (2001) 5928-5934.
    [61] L.-F. Liao, C.-F. Lien, D.-L. Shieh, F.-C. Chen, J.-L. Lin. FTIR Study of Adsorption and Photochemistry of Amide on Powdered TiO2: Comparison of Benzamide with Acetamide. Physical Chemistry Chemical Physics 4 (2002) 4584-4589.
    [62] Y.-C. Lin, T.-E. Chien, K.-L. Li, J.-L. Lin. Comparison of the Thermal and Photochemical Reaction Pathways of Melamine on TiO2. The Journal of Physical Chemistry C 119 (2015) 8645-8651.
    [63] C.-C. Chuang, J.-S. Shiu, J.-L. Lin. Interacion of Hydrazine and Ammonia with TiO2. Physical Chemistry Chemical Physics 2 (2000) 2629-2633.
    [64] P. Hauck, A. Jentys, J. A. Lercher. On the Quantitative Aspects of Hydrolysis of Isocyanic Acid on TiO2. Catalysis Today 127 (2007) 165-175.
    [65] A. M. Bernhard, I. Czekaj, M. Elsener, O. Kröcher. Adsorption and Catalytic Thermolysis of Gaseous Urea on Anatase TiO2 Studied by HPLC Analysis, DRIFT Spectroscopy and DFT Calculations. Applied Catalysis B: Environmental 134-135 (2013) 346-323.
    [66] J. Raskó, T. Bánsági, F. Solynosi. HCN Adsorption on Silica and Titania Supported Rh Catalysis Studied by FTIR. Physical Chemistry Chemical Physics 4 (2002) 2409-3513.
    [67] L.-F. Liao, W.-C. Wu, C.-Y. Chen, J.-L. Lin. Photooxidation of Formic Acid vs Formate and Ethanol vs Ethoxy on TiO¬2 and Effect of Adsorbed Water on the Rates of Formate and Formic Acid Photooxidation. The Journal of Physical Chemistry B 105 (2001) 7678-7685.
    [68] C. Su, J.-C. Yeh, C.-C. Chen, J.-C. Lin, J.-L. Lin. Study of Adsorption and Reactions of Methyl Iodide on TiO2. Journal of Catalysis 194 (2000) 45-54.
    [69] K. Hadjiivanov, H. Knözinger Species Formed after NO Adsorption and NO+O2 co-adsorption on TiO2: an FTIR spectroscopic study. Physical Chemistry Chemical Physics 2 (2000) 2803-2806
    [70] M. Kantcheva. Identification, Stability, and Reactivity of NOx Species Adsorbed on Titania-Supported Manganese Catalysts. Journal of Catalysis 204 (2001) 479-494.
    [71] T.-E. Chien. Adsorption and Reactions of Cyanuric Acid and Cyanuric Halides on Powdered TiO2. Department of Chemistry, National Cheng Kung University (2015).
    [72] K.-L. Li. Adsorption and Reactions of 1H-1,2,3-Triazole on Powdered TiO2. Department of Chemistry, National Cheng Kung University (2016).
    [73] N. Watanabe, S. Horikoshi, A. Kawasaki, H. Hidaka, N. Serpone. Formation of Refractory Ring-Expanded Triazine Intermediates during the Photocatalyzed Mineralization of the Endocrine Disruptor Amitrole and Related Triazole Derivatives at UV-Irradiated TiO2/H2O Interfaces. Environmental Science & Technology 39 (2005) 2320-2326.
    [74] J. Ryu, W. Choi. Substrate-Specific Photocatalytic Activities of TiO2 and Multiactivity Test for Water Treatment Application. Environmental Science & Technology 42 (2008) 294-300.
    [75] J.-M. Herrmann. Fundamentals and Misconceptions in Photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 216 (2016) 85-93.
    [76] C. Turchi, D. Ollis. Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack. Journal of Catalysis 122 (1990) 178-192.
    [77] J. Zhang, Y. Nosaka. Mechanism of the OH Radical Generation in Photocatalysis with TiO2 of Different Crystalline Types. The Journal of Physical Chemistry C 118 (2014) 10824-10832.
    [78] Ş. Yurdakul, S. Tanrıbuyurdu. FT-IR, FT-Raman, Vibrational Assignments, and Density Functional Studies of 1,2,4-Triazole-3-carboxylic Acid, and Its Tautomers, Dimers. Structural Chemistry 23 (2012) 433-440.
    [79] F.-H. Chang, T.-Y. Chen, S.-H. Lee, Y.-H. Chen, Y.-J. Chen, J.-L. Lin. Corrosion Inhibition of Copper Particles on ITO with 1,2,4-Triazole-3-carboxylic Acid. Surface and Interfaces 10 (2018) 162-169.
    [80] T. Bezrodnaa, G. Puchkovska, V. Shymanovska, J. Baran, H. Ratajczak. IR-analysis of H-bonded H2O on the pure TiO2 surface. Journal of Molecular Structure 700 (2004) 175-181.
    [81] L.-F. Liao, C.-F. Lien, D.-L. Shieh, M.-T. Chen, J.-L. Lin. FTIR Study of Adsorption and Photoassisted Oxygen Isotopic Exchange of Carbon Monoxide, Carbon Dioxide, Carbonate, and Formate on TiO2. The Journal of Physical Chemistry B 106 (2002) 11240-11245.

    下載圖示 校內:2023-07-05公開
    校外:2023-07-05公開
    QR CODE