簡易檢索 / 詳目顯示

研究生: 陳節
Chen, Chieh
論文名稱: 探究情境教學法於人工智慧提示工程能力、人工智慧素養、與人工智慧準備度之影響:以ChatGPT之使用為例
Exploring the Impact of Situational Teaching Method on Artificial Intelligence Prompt Engineering Ability, Artificial Intelligence Literacy, and Artificial Intelligence Readiness: Taking the Use of ChatGPT as an Example
指導教授: 王維聰
Wang, Wei-Tsong
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 129
中文關鍵詞: ChatGPT提示工程情境教學法人工智慧素養人工智慧準備度
外文關鍵詞: ChatGPT, Prompt Engineering, Situational Teaching Method, Artificial Intelligence Literacy, Artificial Intelligence Readiness
相關次數: 點閱:247下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人工智慧的快速發展,與人工智慧互動交流及掌握提示工程作為基本能力已成為現今重要課題。然而,人工智慧提示工程能力是一項需要學習的技能,但現今與其相關的教育主題文獻和教學應用少之又少,而採用情境教學法於提示工程教學,可以策略性地促進教學溝通和互動,且更好地實現學習目標,因此本研究欲深入探討。另外,在這科技迅速變化的時代,學生須培養人工智慧素養,並提升人工智慧準備度,負責任地、道德地、批判性地和創造性地使用人工智慧,使其成為能讓社會成長的工具,才能在就業市場上保持競爭力和效率。
    因此,本研究以ChatGPT之使用為例,藉由線上實驗問卷作為調查工具,以學習動機、提示工程能力、人工智慧素養以及人工智慧準備度作為衡量子構面,建立了研究模型架構,並以有無運用情境教學法於分組教學過程作為實驗操弄變項,分別進行提示工程能力分組教學工作與能力前後測之實驗,而受試對象為使用過ChatGPT但未利用其進行過品牌市場分析比較的大專及以上學生。藉此探討運用情境教學法是否可以提高學生於提示工程能力教學的學習動機,以增進學習者提示工程能力之培養,且是否進而影響學習者的人工智慧素養與人工智慧準備度。
    本研究共回收了240份有效問卷,並以結構方程模式及獨立t檢定進行資料分析。根據研究結果顯示,情境教學法相較於傳統教學法,確實有助於提高學生於提示工程能力教學的學習動機,幫助增進提示工程能力的培養,使學生對人工智慧進行批判性的思考與評估,並接受和使用人工智慧來實現目標,進而提升人工智慧素養與人工智慧準備度。最後,本研究也提出了學術與實務上的貢獻,補足過往文獻缺口,並提出了未來研究方向建議,以供後續研究者參考。

    With the rapid advancement of artificial intelligence (AI), interacting with AI and mastering AI prompt engineering ability have become critical issues. However, there is a lack of literature and applications regarding the use of situational teaching method in AI prompt engineering education. In addition, students in the contemporary era are required to cultivate their AI literacy and AI readiness to effectively utilize AI. Therefore, this study takes the use of ChatGPT as an example, conducting an online experiment and questionnaire survey among university students and above who have used ChatGPT but have not utilized it for brand market analysis and comparisons. The aim is to explore the impact of situational teaching method on AI prompt engineering ability, AI literacy, and AI readiness.
    A total of 240 valid questionnaires were collected, and data analysis was conducted using structural equation model and independent t-test. The results indicate that situational teaching method significantly improve students' learning motivation for AI prompt engineering instruction, also enhance AI prompt engineering ability, thereby increasing AI literacy and AI readiness. This enables students to critically evaluate AI, also accept and use it to achieve their goals. This study addresses gaps in prior literature and proposes directions for future research, thereby contributing to both academic and practical fields.

    摘要 I EXTENDED ABSTRACT II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究問題與目的 4 1.2.1 研究問題 4 1.2.2 研究目的 4 1.3 研究範圍與限制 5 1.3.1 研究範圍 5 1.3.2 研究限制 6 1.4 研究流程 6 第二章 文獻探討 8 2.1 ChatGPT 8 2.1.1 ChatGPT 8 2.1.2 ChatGPT的教育面 9 2.2 提示工程(Prompt Engineering) 10 2.2.1 提示工程 10 2.2.2 提示工程的能力 11 2.2.3 提示工程能力的培養與衡量 12 2.3 情境教學法(Situational Teaching Method) 13 2.3.1 情境教學法 13 2.3.2 情境教學法設計原則 14 2.3.3 情境教學法與人工智慧教育 15 2.3.4 情境教學法的教育應用 16 2.3.5 情境教學法的品質衡量 16 2.4 人工智慧素養(Artificial Intelligence Literacy, AIL) 17 2.4.1 人工智慧素養的重要性 17 2.4.2 人工智慧素養的教育 18 2.4.3 人工智慧素養的衡量與評估 19 2.5 人工智慧準備度(Artificial Intelligence Readiness) 19 2.5.1 準備度(Readiness) 19 2.5.2 人工智慧準備度 20 2.5.3 人工智慧準備度的影響因素與衡量評估 21 第三章 研究方法 22 3.1 研究架構與構面 22 3.1.1 研究架構 22 3.1.2 研究構面 23 3.2 研究假說 25 3.2.1 學習動機與提示工程能力 25 3.2.2 提示工程能力與人工智慧素養 26 3.2.3 提示工程能力與人工智慧準備度 27 3.2.4 人工智慧素養與人工智慧準備度 28 3.3 實驗設計 29 3.3.1 實驗說明 29 3.3.2 實驗變項 30 3.3.3 實驗對象 32 3.3.4 實驗流程 33 3.4 問卷設計 44 3.4.1 學習動機(Learning Motivation, LM) 44 3.4.2 提示工程能力(Prompt Engineering Ability, PA) 46 3.4.3 人工智慧素養(AI Literacy, AL) 48 3.4.4 人工智慧準備度(AI Readiness, AR) 50 3.5 問卷前測 53 3.6 資料蒐集 61 3.7 資料分析方法 62 3.7.1 問卷資料分析方法 62 3.7.2 實驗資料分析方法 66 第四章 資料分析與結果 67 4.1 敘述性統計分析 67 4.1.1 問卷回收狀況 67 4.1.2 基本資料敘述性統計 67 4.1.3 研究變項敘述性統計 71 4.2 結構方程模式 - 衡量模型 74 4.2.1 信度分析 74 4.2.2 效度分析 - 收斂效度 78 4.2.3 效度分析 - 區別效度 82 4.2.4 共線性檢驗 83 4.3 結構方程模式 - 結構模型 84 4.3.1 路徑分析 84 4.3.2 模型適配度 85 4.4 實驗評量 87 4.4.1 實驗評量標準 87 4.4.2 實驗評量客觀性 87 4.4.3 實驗評量結果 89 4.5 實驗假說檢定 91 4.5.1 實驗操弄驗證 91 4.5.2 實驗同質性檢定 93 4.5.3 實驗假說檢定結果 94 4.6 研究分析與討論 95 4.6.1 學習動機與提示工程能力 95 4.6.2 提示工程能力與人工智慧素養 96 4.6.3 提示工程能力與人工智慧準備度 97 4.6.4 人工智慧素養與人工智慧準備度 97 第五章 結論 98 5.1 研究貢獻 98 5.1.1 學術貢獻 98 5.1.2 實務貢獻 100 5.2 研究限制與未來研究方向 100 5.2.1 研究限制 101 5.2.2 未來研究方向 102 參考文獻 103 附錄A 正式線上實驗問卷內容整理 109

    Anders, B. A. (2023). Is using ChatGPT cheating, plagiarism, both, neither, or forward thinking?. Patterns (New York, N.Y.), 4(3). Advance online publication. https://doi.org/10.1016/j.patter.2023.100694
    Blut, M., & Wang, C. (2020). Technology readiness: a meta-analysis of conceptualizations of the construct and its impact on technology usage. Journal of the Academy of Marketing Science, 48, 649-669.
    Bozkurt, A., & Sharma, R. C. (2023). Generative AI and prompt engineering: The art of whispering to let the genie out of the algorithmic world. Asian Journal of Distance Education, 18(2), i-vii.
    Brew, M., Taylor, S., Lam, R., Havemann, L., & Nerantzi, C. (2023). Towards Developing AI Literacy: Three Student Provocations on AI in Higher Education. Asian Journal of Distance Education, 18(2), 1-11.
    Chai, C. S., Lin, P. Y., Jong, M. S. Y., Dai, Y., Chiu, T. K., & Qin, J. (2021). Perceptions of and behavioral intentions towards learning artificial intelligence in primary school students. Educational Technology & Society, 24(3), 89-101.
    Chang, Y. S., Hu, K. J., Chiang, C. W., & Lugmayr, A. (2019). Applying Mobile Augmented Reality (AR) to teach Interior Design students in layout plans: Evaluation of learning effectiveness based on the ARCS Model of learning motivation theory. Sensors, 20(1). Advance online publication. https://doi.org/10.3390/s20010105
    Cheung, K. S. (2024). Real Estate Insights Unleashing the potential of ChatGPT in property valuation reports: the “Red Book” compliance Chain-of-thought (CoT) prompt engineering. Journal of Property Investment & Finance, 42(2), 200-206.
    Cooper, G. (2023). Examining science education in chatgpt: An exploratory study of generative artificial intelligence. Journal of Science Education and Technology, 32(3), 444-452.
    Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2024). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61(2), 228-239.
    Dai, Y., Chai, C. S., Lin, P. Y., Jong, M. S. Y., Guo, Y., & Qin, J. (2020). Promoting students’ well-being by developing their readiness for the artificial intelligence age. Sustainability, 12(16). Advance online publication. https://doi.org/10.3390/su12166597
    Diefenbach, M. A., Weinstein, N. D., & O'reilly, J. (1993). Scales for assessing perceptions of health hazard susceptibility. Health Education Research, 8(2), 181-192.
    Ding, H., & Qi, M. (2022). Situational english teaching experience and analysis using distributed 5G and VR. Mobile Information Systems, 2022, 1-7.
    Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., …, Wright, R. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71. Advance online publication. https://doi.org/10.1016/j.ijinfomgt.2023.102642
    Eguchi, A., Okada, H., & Muto, Y. (2021). Contextualizing AI education for K-12 students to enhance their learning of AI literacy through culturally responsive approaches. KI-Künstliche Intelligenz, 35(2), 153-161.
    Ekin, S. (2023). Prompt Engineering For ChatGPT: A Quick Guide To Techniques, Tips, And Best Practices (Version 2). TechRxiv. Advance online publication. https://doi.org/10.36227/techrxiv.22683919.v2
    Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2024). A SWOT analysis of ChatGPT: Implications for educational practice and research. Innovations in Education and Teaching International, 61(3), 460-474.
    Flavián, C., Pérez-Rueda, A., Belanche, D., & Casaló, L. V. (2022). Intention to use analytical artificial intelligence (AI) in services–the effect of technology readiness and awareness. Journal of Service Management, 33(2), 293-320.
    Geisser, S. (1974). A Predictive Approach to the Random Effects Model. Biometrika, 61(1), 101-107.
    Geng, G., Wang, Z. (2020, June 6-8). The Influence of Situational Teaching Model on Classroom Teaching Effect [Conference presentation]. 2020 International Conference on Education Reform and Innovation (ERAI2020), Dalian, China. http://proceedings-online.com/proceedings_series/article/artId/1422.html#location
    Giray, L. (2023). Prompt Engineering with ChatGPT: A Guide for Academic Writers. Annals of Biomedical Engineering, 51, 2629-2633.
    Gleason, N. (2022, December 9). ChatGPT and the rise of AI writers: How should higher education respond?. Times Higher Education. Retrieved November 20, 2023, from https://www.timeshighereducation.com/campus/chatgpt-and-rise-ai-writers-how-should-higher-education-respond
    Guo, H., & Gao, W. (2022). Metaverse-powered experiential situational English-teaching design: an emotion-based analysis method. Frontiers in Psychology, 13. Advance online publication. https://doi.org/10.3389/fpsyg.2022.859159
    Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (3rd ed.). Thousand Oaks: Sage.
    Hauptman, P. C. (1971). A Structural Approach vs. A Situational Approach to Foreign-Language Teaching. Language Learning, 21(2), 235-244.
    Henrickson, L., & Meroño-Peñuela, A. (2023). Prompting meaning: a hermeneutic approach to optimising prompt engineering with ChatGPT. AI & Society. Advance online publication. https://doi.org/10.1007/s00146-023-01752-8
    Hinton, P.R., McMurray, I., & Brownlow, C. (2014). SPSS Explained (2nd ed.). Routledge.
    Holmström, J. (2022). From AI to digital transformation: The AI readiness framework. Business Horizons, 65(3), 329-339.
    Hongmei, W., Xiaohua, N., Jing, S., Yunjia, P., & Hua, X. (2020). Application of Situational Simulation Teaching Method in Leadership Science and Art Course. Teacher Education and Curriculum Studies, 5(1), 7-13.
    Jiang, M., & Zhou, H. (2022). Investigation and Analysis of the Oral Expression Competency Among Students in Second-tier Universities: Based on China’s Standards of English Language Ability. Journal of Contemporary Educational Research, 6(2), 27-42.
    Karaca, O., Çalışkan, S. A., & Demir, K. (2021). Medical artificial intelligence readiness scale for medical students (MAIRS-MS)–development, validity and reliability study. BMC Medical Education, 21, 1-9.
    Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development, 10(3), 2-10.
    Kong, S. C., & Zhang, G. (2021, September 11-15). A conceptual framework for designing artificial intelligence literacy programmes for educated citizens [Conference presentation]. Conference proceedings (English paper) of the 25th Global Chinese Conference on Computers in Education (GCCCE 2021), Hong Kong, China. https://repository.eduhk.hk/en/publications/a-conceptual-framework-for-designing-artificial-intelligence-lite
    Lee, K. C., Yu, C. C., Hsieh, P. L., Li, C. C., & Chao, Y. F. C. (2018). Situated teaching improves empathy learning of the students in a BSN program: A quasi-experimental study. Nurse Education Today, 64, 138-143.
    Lin, J. S. C., & Hsieh, P. L. (2012). Refinement of the technology readiness index scale: A replication and cross‐validation in the self‐service technology context. Journal of Service Management, 23(1), 34-53.
    Lo, L. S. (2023). The CLEAR path: A framework for enhancing information literacy through prompt engineering. The Journal of Academic Librarianship, 49(4). Advance online publication. https://doi.org/10.1016/j.acalib.2023.102720
    Long, D., & Magerko, B. (2020, April 25-30). What is AI literacy? Competencies and design considerations [Conference presentation]. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, New York, NY, United States. https://doi.org/10.1145/3313831.3376727
    Luckin, R., Cukurova, M., Kent, C., & du Boulay, B. (2022). Empowering educators to be AI-ready. Computers and Education: Artificial Intelligence, 3. Advance online publication. https://doi.org/10.1016/j.caeai.2022.100076
    Ma, L., & Lee, C. S. (2021). Evaluating the effectiveness of blended learning using the ARCS model. Journal of Computer Assisted Learning, 37(5), 1397-1408.
    McLellan, H. (1996). Situated learning: Multiple perspectives. In McLellan, H. (Ed.), Situated Learning Perspectives (pp. 5-17). Educational Technology Publications.
    Meisels, S. J. (1998, November 1). Assessing Readiness (CIERA-R-3-002). CIERA Report. Center for the Improvement of Early Reading Achievement, Ann Arbor, MI, United States. http://files.eric.ed.gov/fulltext/ED429272.pdf
    Men, Y. Z., Yu, H. B., Wang, H., Xu, L., & Pan, X. (2013). Evaluation on Situational Teaching Cases of Mechanical Engineering Project Management. Applied Mechanics and Materials, 256, 3020-3023.
    Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2. Advance online publication. https://doi.org/10.1016/j.caeai.2021.100041
    OpenAI. (2023). Is ChatGPT biased?. Educator FAQ, OpenAI. Retrieved November 20, 2023, from https://help.openai.com/en/articles/8313359-is-chatgpt-biased
    Oppenlaender, J., Linder, R., & Silvennoinen, J. (2023). Prompting ai art: An investigation into the creative skill of prompt engineering. arXiv Preprint. Advance online publication. https://doi.org/10.48550/arXiv.2303.13534
    Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307-320.
    Parasuraman, A., & Colby, C. L. (2015). An updated and streamlined technology readiness index: TRI 2.0. Journal of Service Research, 18(1), 59-74.
    Ramsden, P. (1988). Context and strategy: Situational influences on learning. In Schmeck, R. R. (Ed.), Learning Strategies and Learning Styles (pp. 159-184). Springer. https://doi.org/10.1007/978-1-4899-2118-5_7
    Rusandi, M. A., Ahman, Saripah, I., Khairun, D. Y., & Mutmainnah. (2023). No worries with ChatGPT: building bridges between artificial intelligence and education with critical thinking soft skills. Journal of Public Health, 45(3), 602-603.
    Shih, P. K., Lin, C. H., Wu, L. Y., & Yu, C. C. (2021). Learning ethics in AI—teaching non-engineering undergraduates through situated learning. Sustainability, 13(7). Advance online publication. https://doi.org/10.3390/su13073718
    Sosu, E. M. (2013). The development and psychometric validation of a Critical Thinking Disposition Scale. Thinking Skills and Creativity, 9, 107-119.
    Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society, 36(2), 111-147.
    Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1273-1296.
    Tayie, S. (2005). Research Methods and Writing Research Proposals. Center for Advancement of Postgraduate Studies and Research in Engineering Sciences, Faculty of Engineering-Cario University(CAPSCU): Pathways to Higher Education.
    Wang, B., Rau, P. L. P., & Yuan, T. (2023). Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 42(9), 1324-1337.
    Wang, N., & Lester, J. (2023). K-12 Education in the Age of AI: A Call to Action for K-12 AI Literacy. International Journal of Artificial Intelligence in Education, 33(2), 228-232.
    Wang, X., Li, L., Tan, S. C., Yang, L., & Lei, J. (2023). Preparing for AI-enhanced education: Conceptualizing and empirically examining teachers’ AI readiness. Computers in Human Behavior, 146. Advance online publication. https://doi.org/10.1016/j.chb.2023.107798
    Warzel C. (2023, February 8). The Most Important Job Skill of This Century. The Atlantic. https://www.theatlantic.com/technology/archive/2023/02/openai-text-models-google-search-engine-bard-chatbot-chatgpt-prompt-writing/672991
    Woo, D. J., Guo, K., & Susanto, H. (2023). Cases of EFL Secondary Students' Prompt Engineering Pathways to Complete a Writing Task with ChatGPT. arXiv Preprint. Advance online publication. https://doi.org/10.48550/arXiv.2307.05493
    Xiang, L., Bing, B., & Xiaowei, W. (2017). Research and application of situational teaching in the ideological and political education of teenagers. Agro Food Industry Hi-Tech, 28(1), 670-673.
    Zhao, M., & Liu, X. (2019, August 23-25). The Practical Research of Situational Simulation Teaching Method in the Course of Customer Relation Management [Conference presentation]. Proceedings of the 2019 5th International Conference on Social Science and Higher Education (ICSSHE 2019), Xiamen, China. https://doi.org/10.2991/icsshe-19.2019.122

    無法下載圖示 校內:2029-05-26公開
    校外:2029-05-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE