| 研究生: |
葉惟中 Yeh, Wei-Chung |
|---|---|
| 論文名稱: |
村里等級建築能源耗用評估及全台能耗地圖之建立 Generating building energy consumption model and map at village scale in Taiwan |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 村里建築能源模型 、台灣建築能耗地圖 、城市熱島 、學校空調能耗預測 |
| 外文關鍵詞: | Village building energy model, Building energy consumption map, Urban heat island, School air-condition energy consumption prediction |
| 相關次數: | 點閱:122 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
城市佔了全球1/2以上的人口、2/3以上的經濟流動和3/4的碳排放,改善都市發展遇到的問題相當於積極影響全球50%以上的人口。本研究欲評估及預測城市的建築能源分布與強度,以利建立地區能源政策,改善城市的建築能源性能。
本研究建立了一個用於評估全台各村里建築能源消耗的模型,以建築土地利用、各類建築使用強度與建築空間能耗密度建模,自下而上快速地估算台灣村里建築電力耗用的分布、強度。相較同樣是由下而上的城市建築物理性質建模法,省去每個原型建築物的詳細變量。不僅加快了模擬速度,也擴大了模擬的範圍。最重要的是,模型的時-空單位降為四季日夜-村里,比年-城市更精細、更適合用於台灣,可提供地方團隊建立地方性能源政策時參考。
模型以住宅類建築做初步模擬,並以住宅建築實際用電資料作為驗證對照進行簡單線性迴歸。住宅類建築能耗估算結果級距為0~195(kWh/m2-yr)、台電2018住宅售電數值級距為0~202(kWh/m2-yr)。迴歸結果: R2皆>0.75; RMSE為3~37.39; MAE為1.51~5.03,且p值<0.05,代表本研究能源模型估算值可解釋實際用電值。對於各城市村里住宅能耗高估、低估情形,以估算值xi代入迴歸式ŷ = α + βxi修正,得出的配適值ŷ更接近於實際用電值yi。驗證模型後,將所有類型建築皆代入此模型,所得數據即代表近幾年全台各村里的建築電力消耗情況,並以數據建立全台建築能源耗用地圖。後續用此模型比對城市季節氣溫與季節建築能耗的相關性以探討城市建築能耗和城市熱島關聯、以及預測全台國中小學校建築新增空調量。
研究結果為1.建立村里建築能源模型2.全台各村里建築能耗估算數據及地圖 3.氣溫與建築能耗的關係。其中,台中市於夏季白天12點時建築能耗與都市熱島現象相關性最高4.全台國中小建築新增空調能耗量預測。
Building energy model can evaluate wide range energy demand so as to supply energy strategies. This study developed a model to estimate buildings energy consumption in villages scale. Method based on generalized large-scale geographic information system (GIS), using building land use, building use intensity, and building space energy density modeling.
Compared with the same bottom-up mode of urban buildings energy, the detailed variables of each prototype building are omitted. It not only speeds up the simulation speed, but also expands the scope of the simulation. Most importantly, the time-space unit of the model is reduced to the four seasons day and night-the village, which is more refined than the year-the city, and is more suitable for use in Taiwan, which can provide a reference for local teams to establish local energy policies.
The model took residential buildings for a preliminary simulation, and used electricity sales data of residential buildings as a verification control to perform simple linear regression. Residential building energy consumption estimation results range from 0 to 195 (kWh/m2-yr), and Taipower 2018 residential electricity sales range from 0 to 202 (kWh/m2-yr). Via regression, R2 were all above 0.75; RMSE was 3~37.39; MAE was 1.51~5.03, and p value was lower than 0.05.
After verifying the model, all kinds of buildings were substituted into this model, and the result was used to build a building energy consumption map. More often, this model also used to compare the correlation between Taichung citys’ seasonal temperature and building energy consumption, and predicted electricity use of air-conditioning of primary and secondary schools.
1. 內政部建築研究所(2019)。綠建築評估手冊-基本型(EEWH-BC)
2. 林奉宜(2015)。都市區域建築能源耗用地圖建置方法與應用。國立成功大學建築研究所碩士論文
3. 張謦(2019)。基於土地使用分區及實際使用狀況之都市建築能耗簡易預估方法研究。國立成功大學建築研究所碩士論文
4. 鄭婉真(2017)。建築空調能源政策分析報告。工業技術研究院
5. 蘇梓靖(2015)。美國Energy Star建築EUI營運因子正規化修正分析技術報告。工業技術研究院
6. Abdo Abdullah Ahmed Gassar, Seung Hyun Cha (2020). Energy prediction techniques for large-scale buildings towards a sustainable built environment: A review. Energy and Buildings Volume 224
7. A. Mastrucci, A. Marvuglia, U. Leopold, E. Benetto (2017). Life Cycle Assessment of building stocks from urban to transnational scales: a review. Renew Sustain Energy Rev, 74, pp. 316-332
8. AMLI (2020). AMLI Residential Releases Results of 2020 Sustainable Living Index. https://www.businesswire.com/news/home/20200813005578/en/AMLI-Residential-Releases-Results-of-2020-Sustainable-Living-Index
9. Arnulf Grubler, X. Bai, T. Buettner, S. Dhakal, D.J. Fisk, T. Ichinose (2012). Urban Energy Systems. Global Energy Assessment (GEA) toward a Sustainable Future, Pages 1307-1400
10. ASHRAE(2011). Standard 140-2011-Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta GA
11. Alessio Mastrucci , Oliver Baume , Francesca Stazi, Ulrich Leopold (2014). Estimating energy savings for the residential building stock of an entire city: A GIS-based statistical downscaling approach applied to Rotterdam. Energy and Buildings,75, p.358-367
12. B.Howard, L.Parshall, J.Thompsonc, S.Hammerb, J.Dickinsond, V.Modi (2012). Spatial distribution of urban building energy consumption by end use. Energy and Buildings,45, 141-151
13. C.F. Reinhart, C. Cerezo Davila (2016). Urban building energy modeling – a review of a nascent field. Build Environ, 97 , pp. 196-202
14. Costa Gaia, Mangiarotti Anna (2012). A methodology for assessing energy performance of a large scale building stock. 博士論文
15. David Spratt and Ian T Dunlop (2019). The Third Degree: Evidence and implications for Australia of existential climate-related security risk
16. D. Barriopedro, P. M. Sousa, R. M. Trigo, R. García-Herrera, A. M. Ramos (2020). The Exceptional Iberian Heatwave of Summer 2018. Bulletin of the American Meteorological Society, Volume 101: Issue 1, 29-34
17. Environmental and Energy Study Institute (2017). Online; accessed 10-July-2019, http://www.eesi.org/
18. Eugene R.Wahl, Eduardo Zorita, Valerie Trouet, Alan H.Taylor (2019). Jet stream dynamics, hydroclimate, and fire in California from 1600 CE to present. PNAS,12,5393-5398
19. Gary Goertz, James Mahoney (2012). A Tale of Two Cultures: Qualitative and Quantitative Research in the Social Sciences
20. H. Lim, Z.J. Zhai (2017). Review on stochastic modeling methods for building stock energy prediction. Building Simulation volume 10, pages607–624
21. Ilaria Ballarini, Stefano Paolo Corgnati, Vincenzo Corrado (2014). Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project. Energy Policy, Volume 68, Pages 273-284
22. Ina De Jaeger, Jesus Lago, Dirk Saelens (2021). A probabilistic building characterization method for district energy simulations. Energy and Buildings
Volume 230
23. I. Theodoridou, A.M. Papadopoulos, M. Hegger (2012). A feasibility evaluation tool for sustainable cities–a case study for Greece. Energy Policy, 44, pp. 207-216
24. Internation Energy Agency (2016). Energy technology perspectives (Executive summary) p. 371, https://doi.org/10.1787/energy_tech-2014-en
25. Jacopo Gaspari, Michaela De Giglio, Ernesto Antonini and Vincenzo Vodola(2020). A GIS-Based Methodology for Speedy Energy Efficiency Mapping: A Case Study in Bologna. Energies 2020, 13(9), 2230; https://doi.org/10.3390/en13092230
26. John Snow (1855). On the Mode of Communication of Cholera -second edition
27. Kelly Mahoney (2020). Extreme Hail Storms and Climate Change: Foretelling the Future in Tiny, Turbulent Crystal Balls? Bulletin of the American Meteorological Society, Volume 101: Issue 1, 17-22
28. Li, C.,Huang, B., Ed.(2018).GIS for Urban Energy Analysis. In Comprehensive Geographic Information Systems; Elsevier: Oxford, UK; pp. 187–195
29. L. Swan, V. Ugursal (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13, 1819-1835
30. Meyers et al. (2003). Impacts of US federal energy efficiency standards for residential appliances, Energy, 28, 755-767
31. MortenBrøgger, Kim BjarneWittchen (2018). Estimating the energy-saving potential in national building stocks – A methodology review. Renewable and Sustainable Energy Reviews, Volume 82, Part 1, Pages 1489-1496
32. Michael Wetter, Philip Haves (2008). A Modular Building Controls Virtual Test Bed for the Integration of Heterogeneous Systems. 3rd SimBuild Conference, Berkeley, California
33. Miroslava Kavgic, a. Mavrogianni, D. Mumovic, a. Summerfield, Z. Stevanovic, M. Djurovic-Petrovic (2010). A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment, Volume 45, Issue 7, Pages 1683-1697
34. Nicholas J. Leach, Sihan Li, Sarah Sparrow, Geert Jan van Oldenborgh, Fraser C.Lott, Antje Weisheimer, Myles R.Allen (2020). Anthropogenic Influence on the 2018 Summer Warm Spell in Europe: The Impact of Different Spatio-Temporal Scales. Bulletin of the American Meteorological Society, Volume 101: Issue 1, 41-46
35. Paola Caputo, Gaia Costa, Simone Ferrari (2013). A supporting method for defining energy strategies in the building sector at urban scale
36. R. Saidur, H.H. Masjuki, M.Y. Jamaluddin (2007). An application of energy and exergy analysis in residential sector of Malaysia. Energy Policy,Volume 35, 1050-1063
37. Ronald Fisher (1925).
38. Sara Torabi Moghadam, JacopoToniolo, GuglielminaMutani, PatriziaLombardi (2018) A GIS-statistical approach for assessing built environment energy use at urban scale. Sustainable Cities and Society
39. Steven Jige Quan, Qi Li, Godfried Augenbroe, Jason Brown, Perry Pei-Ju Yang (2015). Urban Data and Building Energy Modeling: A GIS-Based Urban Building Energy Modeling System Using the Urban-EPC Engine, Planning Support Systems and Smart Cities, pp 447-469
40. S Meyers, J.EMcMahon, MMcNeil, XLiu (2003). Impacts of US federal energy efficiency standards for residential appliances, Energy 28, 755-767
41. SaraTorabi Moghadam et al. (2018) A GIS-statistical approach for assessing built environment energy use at urban scale. Sustainable Cities and Society, Volume 37, Pages 70-84
42. Shem Heiple David J. Sailor (2008). Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy consumption profiles. Energy and Buildings, Volume 40, Pages 1426-1436
43. Tarannom Parhizkar, Elham Rafieipour, Aram Parhizkar (2021). Evaluation and improvement of energy consumption prediction models using principal component analysis based feature reduction. Journal of Cleaner Production Volume 279
44. The European Parliament (2002). The Council of 16 December 2002 on the energy performance of buildings (EPBD)
45. USGCRP (2018). Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report.
46. Yixing Chen,Tianzhen Hong (2018). Impacts of building geometry modeling methods on the simulation results of urban building energy models. Applied Energy, Volume 215, Pages 717-735
47. YongJin Ahna, Dong-Wook Sohn (2019). effect of neighbourhood-level urban form on residential building energy use: A GIS-based model using building energy benchmarking data in Seattle. Energy and Buildings, Volume 196, Pages 124-133
48. Ziwei Li, Borong Lin, Shanwen Zheng, Yanchen Liu, Zhe Wang & Jian Dai (2020). A review of operational energy consumption calculation method for urban buildings. Building Simulation volume 13, pages739–751