簡易檢索 / 詳目顯示

研究生: 邱雅蘭
Chiou, Ya-Lan
論文名稱: 應用表面處理技術研製氧化鋅閘極氧化層之氮化鋁鎵/氮化鎵金氧半高速電子遷移率場效電晶體
Investigation and fabrication of AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors with surface treatment and the i-ZnO gate dielectric layer
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 109
中文關鍵詞: 氮化鎵金氧半高速電子遷移率電晶體表面處理
外文關鍵詞: GaN, MOS-HEMTs, surface treatment
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,以低溫氣相冷凝技術蒸鍍本質氧化鋅薄膜於經表面處理之氮化鋁鎵上,並藉由化學分析電子能譜儀分析本質氧化鋅與氮化鋁鎵之能帶偏移量,分析探討並證明表面處理技術能改善本質氧化鋅與氮化鋁鎵之界面品質,大幅增加導帶偏移量,進而提升載子之侷限能力。將此低溫氣相冷凝技術與表面處理技術應用於製作氮化鋁鎵金氧半二極體元件,探討本質氧化鋅與氮化鋁鎵之界面態密度,本質氧化鋅薄膜厚度約為50奈米,經由光輔助電容電壓量測法,可求得本質氧化鋅薄膜與氮化鋁鎵之界面態密度,表面未處理,表面硫化處理與表面氯氣處理之金氧半二極體之界面態密度分別為8.29 × 1011cm-2eV-1,2.95 × 1011cm-2eV-1,1.99 × 1011cm-2eV-1,顯見表面處理技術可以減少本質氧化鋅與氮化鋁鎵界面態密度與改善其界面品質。
    此外將此結合表面處理與本質氧化鋅薄膜沉積兩種技術引進氮化鋁鎵/氮化鎵金氧半高速電子遷移率場效電晶體元件,相較於表面未處理之氮化鋁鎵/氮化鎵高速電子遷移率場效電晶體元件,表面處理之元件具有較佳的直流、高頻、低頻雜訊與脈衝輸出特性,尤其以表面氯氣處理之氮化鋁鎵/氮化鎵金氧半高速電子遷移率場效電晶體元件特性最佳,其改善的機制為藉由表面氯氣處理,可去除鎵懸鍵並同時形成氧化鎵護佈氮空缺,進而提升其蕭特基能障,其表面氯氣處理之氮化鋁鎵/氮化鎵金氧半高速電子遷移率場效電晶體元件之直流輸出特性相較於表面未處理之金氧半電晶體元件,有更加明顯的提升,改善幅度高達約40 %,且脈衝輸出特性與直流輸出特性相近,無明顯電流崩塌現象。此外於低頻雜訊特性部分,經氯氣處理後,元件之量化指標虎格係數降低至7.23 × 10-6,可證明此結合表面處理與低溫氣相冷凝蒸鍍技術能製作出高性能氮化鎵半導體之電晶體元件。

    In this dissertation, the vapor cooling condensation system was used to deposit the intrinsic ZnO (i-ZnO) film on the untreated and the surface treated AlGaN layer. To investigate the improvement mechanisms of the surface treatment on the AlGaN surface, the XPS measurement was used to analyze the band offset of the i-ZnO/AlGaN interface. It provided that the surface treatment could improve the quality of i-ZnO/AlGaN interface and enhance the conduction band offset. To estimate the interface state density at the i-ZnO/AlGaN interface, the AlGaN MOS diodes with the i-ZnO film were fabricated using the combination technology of the vapor cooling condensation system and the surface treatment. The thickness of the i-ZnO film was about 50 nm. By using the photo-assisted capacitance-voltage method, the interface state density of the untreated, the (NH4)2Sx-treated, and the chlorine-treated AlGaN MOS diodes with the i-ZnO insulator was8.29 × 1011cm-2eV-1,2.95 × 1011cm-2eV-1, and 1.99 × 1011cm-2eV-1, respectively. Obviously, the surface treatment could effectively improve the quality of the i-ZnO/AlGaN interface and reduce the interface state density.
    By using the combination technology of the vapor cooling condensation system and the surface treatment, the surface treated MOS-HEMTs with i-ZnO gate dielectric layer was fabricated. Comparing with the untreated MOS-HEMTs, the surface treated MOS-HEMTs showed the better direct current, high frequency, low frequency noise, and pulsed output performances. The output performances of the chlorine-treated MOS-HEMTs were especially better than those of the untreated and the (NH4)2Sx-treated MOS-HEMTs. The improvement mechanism of the chlorine surface treatment was the reduction of the Ga dangling bond and the passivation of the N vacancy by the GaOx. Comparing with the untreated MOS-HEMTs, the percentage improvement of the direct current output performance for the chlorine-treated MOS-HEMTs was about 40 %. The pulsed output characteristics of the chlorine-treated MOS-HEMTs were similar with the direct current output characteristic of the chlorine-treated ones. Furthermore, the Hooge’s coefficient  of the chlorine-treated MOS-HEMTs was about 7.23 × 10-6. It verified that the combination technology of the chlorine surface treatment and the vapor cooling condensation system is a promising method for fabricate a high performance GaN-based MOS devices.

    Abstract (in Chinese) II Abstract (in English) IV Contacts VII Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Overview of this dissertation 3 Chapter 2 Theory 11 2.1 The charge neutrality level (CNL) 11 2.2 The determining method for the band offset of the heterostructure 12 2.3 Photo-assisted capacitance-voltage method 14 2.4 The model of the low frequency noise 16 Chapter 3 Device fabrication 25 3.1 The vapor cooling condensation system 25 3.2 The (NH4)2Sx surface treatment 25 3.3 The chlorine surface treatment 26 3.4 The preparing process of the samples used in XPS measurement 27 3.5 The fabrication process of the AlGaN MOS diodes 29 3.6 The fabrication process of the AlGaN/GaN MOS-HEMTs 30 Chapter 4 The i-ZnO film utilized in AlGaN/GaN MOS-HEMTs 40 4.1 Direct current output performance 40 4.2 High frequency performance 41 4.3 Low frequency noise performance 41 4.4 Pulsed output performance 42 4.5 Summary 43 Chapter 5 (NH4)2Sx surface treatment utilized in AlGaN MOS devices with i-ZnO film 49 5.1 The band offset of the i-ZnO film contacts with the untreated and the (NH4)2Sx-treated AlGaN 49 5.2 The untreated and the (NH4)2Sx-treated AlGaN MOS diodes with the i-ZnO film 53 5.3 The untreated and the (NH4)2Sx-treated AlGaN/GaN MOS- HEMTs 55 5.3.1 Direct current output performance 55 5.3.2 High frequency performance 56 5.3.3 Low frequency noise performance 56 5.3.4 Pulsed output performance 57 5.4 Summary 61 Chapter 6 Chlorine surface treatment utilized in AlGaN MOS devices with i-ZnO film 79 6.1 The band offset of the i-ZnO film contacts with the untreated and the chlorine-treated AlGaN 79 6.2 The untreated and the chlorine-treated AlGaN MOS diodes with the i-ZnO film 81 6.3 The untreated and the chlorine-treated AlGaN/GaN MOS-HEMTs 82 6.3.1 Direct current output performance 82 6.3.2 High frequency performance 84 6.3.3 Low frequency noise performance 85 6.3.4 Pulsed output performance 86 6.4 Summary 89 Chapter 7 Conclusion and future work 107

    ch1
    [1] J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, P. F. Chou, and C. Y. Chang, “Schottky contact and the thermal stability of Ni on n -type GaN,” J. Appl. Phys., vol. 80, no. 3, pp. 1623-1627, Aug. 1996.
    [2] S. Ruvimov, Z. Liliental-Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z. F. Fan, S. N. Mohammad, W. Kim, A. E. Botchkarev, and H. Morkoç, “Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN,” Appl. Phys. Lett., vol. 69, no. 11, pp. 1556-1558, Sep. 1996.
    [3] C. T. Lee, M. Y. Yeh, C. D. Tsai, and Y. T. Lyu, “Low resistance bilayer Nd/Au ohmic contacts on n-type GaN,” J. Electron. Mater., vol. 26, no. 3, pp. 262-265, Mar. 1997.
    [4] C. T. Lee, Q. X. Yu; B. T. Tang, H. Y. Lee, and F. T. Hwang, “Investigation of indium tin oxide/zinc oxide multilayer ohmic contacts to n-type GaN isotype conjunction,” Appl. Phys. Lett., vol. 78, no. 22, pp. 3412-3414, May 2001.
    [5] K. M. Tracy, P. J. Hartlieb, S. Einfeldt, R. F. Davis, E. H. Hurt, and R. J. Nemanich, “Electrical and chemical characterization of the Schottky barrier formed between clean n-GaN(0001) surfaces and Pt, Au, and Ag,” J. Appl. Phys., vol. 94, no. 6, pp. 3939-3948, Sep. 2003.
    [6] Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. T. Lee, T. C. Wen, L. W. Wu, C. H. Kuo, C. S. Chang, and S. C. Shei, “Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs,” J. Cryst. Growth, vol. 261, no. 4, pp. 466-470, Feb. 2004.
    [7] J. H. Lee, D. Y. Lee, B. W. Oh, and J. H. Lee, “Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate,” IEEE Trans. Electron Devices, vol. 57, no. 1, pp. 157-163, Jan. 2010.
    [8] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 848-850, Aug. 2001.
    [9] P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Lüth, and P. Kordoš, “AlGaN-GaN HEMTs on (111) silicon substrates,” IEEE Electron Device Lett., vol. 23, no. 1, pp. 4-6, Jan. 2002.
    [10] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White light emission of monolithic carbon-implanted InGaN-GaN light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, no. 19, pp. 2029-2031, Oct. 2006.
    [11] J. T. Yan and C. T. Lee, “Improved detection sensitivity of Pt/-Ga2O3/GaN hydrogen sensor diode,” Sens. Actuators B, vol. 143, no. 1, pp. 192-197, Dec. 2009.
    [12] Y. L. Chiou, L. H. Huang, and C. T. Lee, “Photoelectrochemical function in gate-recessed AlGaN/GaN metal-oxide-semiconductor high-electron- mobility transistors,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 183-185, Mar. 2010.
    [13] C. C. Lin and C. T. Lee, “Enhanced light extraction mechanism of GaN-based light-emitting diodes using top surface and side-wall nanorod arrays,” IEEE Photon. Technol. Lett., vol. 22, no. 15, pp. 1132-1134, Aug. 2010.
    [14] J. Liu, Y. Zhou, J. Zhu, Y. Cai, K. M. Lau, and K. J. Chen, “DC and RF characteristics of AlGaN/GaN/InGaN/GaN double-heterojunction HEMTs,” IEEE Trans. Electron Devices, vol. 54, no. 1, pp. 2-10, Jan. 2007.
    [15] F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, and G. Borghs, “Low on-resistance high-breakdown normally off AlN/GaN/AlGaN DHFET on Si substrate,” IEEE Electron Device Lett., vol. 31, no. 2, pp. 111-113, Feb. 2010.
    [16] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, J. C. M. Hwang, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett., vol. 86, no. 6, pp. 063501-1063501-3, Jan. 2005.
    [17] M. Marso, G. Heidelberger, K. M. Indlekofer, J. Bernát, A. Fox, P. Kordoš, and H. Lüth, “Origin of improved RF performance of AlGaN/GaN MOSHFETs compared to HFETs,” IEEE Trans. Electron Devices, vol. 53, no. 7, pp. 1517-1523, Jul. 2006.
    [18] M. Higashiwaki, T. Mimura, and T. Matsui, “AlN/GaN insulated-gate HFETs using Cat-CVD SiN,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 719-721, Sep. 2006.
    [19] L. H. Huang, S. H. Yeh, C. T. Lee, H. Tang, J. Bardwell, and J. B. Webb, “AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 284-286, Apr. 2008.
    [20] J. Shi, L. F. Eastman, X. Xin, and M. Pophristic, “High performance AlGaN/GaN power switch with HfO2 insulation,” Appl. Phys. Lett., vol. 95, no. 4, pp. 042103-1042103-3, Jul. 2009.
    [21] D. Kim, V. Kumar, J. Lee, M. Yan, A. M. Dabiran, A. M. Wowchak, P. P. Chow, and I. Adesida, “Recessed 70-nm gate-length AlGaN/GaN HEMTs fabricated using an Al2O3/SiNx dielectric layer,” IEEE Electron Device Lett., vol. 30, no. 9, pp. 913-915, Sep. 2009.
    [22] C. T. Lee, Y. K. Su, and H. M. Wang, “Effect of R. F. sputtering parameters on ZnO films deposited onto GaAs substrate,” Thin Solid Films, vol. 150, no. 2-3, pp. 283-289, Jul. 1987.
    [23] Y. Zhang, D. J. Chen, and C. T. Lee, “Free exciton emission and dephasing in individual ZnO nanowires,” Appl. Phys. Lett., vol. 91, no. 16, pp. 161911-1161911-3, Oct. 2007.
    [24] E. Kaminska, A. Piotrowska, M. A. di Forte Poisson, S. Delage, H. Lahreche, N. Kwietniewski, I. Pasternak, R. Kruszka, M. Guziewicz, P. Boguslawski, E. Dynowska, and M. Borysiewicz, “Application of ZnO to passivate the GaN-based Device structures,” Mater. Res. Soc. Symp. Proc., vol. 1035, p. 1035-L08-08, 2008.
    [25] H. Kim, C. M. Gilmore, J. S. Horwitz, A. Pigue, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices,” Appl. Phys. Lett., vol. 76, pp. 259-261, Jan. 2000.
    [26] C. T. Lee, Q. X. Yu, B. T. Tang, H. Y. Lee, and F. T. Hwang, “Investigation of indium tin oxide/zinc oxide multilayer ohmic contacts to n-type GaN isotype conjunction,” Appl. Phys. Lett., vol. 78, pp. 3412-3414, May 2001.
    [27] S. Sasa, M. Ozaki, K. Koike, M. Yano, and M. Inoue, “High-performance ZnO/ZnMgO field-effect transistors using a hetero-metal-insulator- semiconductor structure,” Appl. Phys. Lett., vol. 89, no. 5, pp. 053502-1053502-3, Aug. 2006.
    [28] C. Y. Lu, S. J. Chang, S. P. Chang, C. T. Lee, C. F. Kuo, H. M. Chang, Y. Z. Chiou, C. L. Hsu, and I. C. Chen, “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates,” Appl. Phys. Lett., vol. 89, no. 15, pp. 153101-1153101-3, Oct. 2006.
    [29] C. T. Lee, Y. H. Lin, L. W. Lai, and L. R. Lou, “Mechanism investigation of p-i-n ZnO-based light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 22, no. 1, pp. 30-32, Jan. 2010.
    [30] H. Y. Lee, Y. H. Chou, C. T. Lee, W. Y. Yeh, and M. T. Chu, “Mechanisms of lighting enhancement of Al nanoclusters-embedded Al-doped ZnO film in GaN-based light-emitting diodes,” J. Appl. Phys., vol. 107, no. 1, pp. 014503-1014503-5, Jan. 2010.
    [31] C. T. Lee, “Fabrication methods and luminescent properties of ZnO materials for light-emitting diodes,” Mater., vol. 3, no. 3, pp. 2218-2259, Mar. 2010.
    [32] L. W. Lai and C. T. Lee, “Investigation of optical and electrical properties of ZnO thin films,” Mater. Chem. Phys., vol. 110, no. 2-3, pp. 393-396, Aug. 2008.
    [33] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique,” Appl. Phys. Lett., vol. 91, no. 23, pp. 231113-1231113-3, Dec. 2007.
    [34] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique,” J. Appl. Phys., vol. 108, no. 7, pp. 073119-1073119-6, Oct. 2010.
    [35] C. T. Lee, Y. J. Lin, and D. S. Liu, “Schottky barrier height and surface state density of Ni/Au contacts to (NH4)2Sx-treated n-type GaN,” Appl. Phys. Lett., vol. 79, no. 16, pp. 2573-2575, Oct. 2001.
    [36] P. S. Chen, T. H. Lee, L. W. Lai, and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer,” J. Appl. Phys., vol. 101, no. 4, pp. 024507-1024507-4, Jan. 2007.

    ch2
    [1] J. R. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, no. 3, pp. 1785-1791, May/Jun. 2000.
    [2] J. Tersoff, “Schottky barrier height and the continuum of gap states,” Phys. Rev. Lett., vol. 52, no. 6, pp. 465-468, Feb. 1984.
    [3] J. J. Chen, B. P. Gila, M. Hlad, A. Gerger, F. Ren, C. R. Abernathy and S. J. Pearton, “Determination of MgO/GaN heterojunction band offsets by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 88, no. 4, pp. 042113-1042113-3, Jan. 2006.
    [4] J. J. Chen, B. P. Gila, M. Hlad, A. Gerger, F. Ren, C. R. Abernathy, and S. J. Pearton, “Band offsets in the Sc2O3/GaN heterojunction system,” Appl. Phys. Lett., vol. 88, no. 14, pp. 142115-1142115-3, Apr. 2006.
    [5] H. B. Fan, G. S. Sun, S. Y. Yang, P. F. Zhang, R. Q. Zhang, H. Y. Wei, C. M. Jiao, X. L. Liu, Y. H. Chen, Q. S. Zhu, and Z. G. Wang, “Valence band offset of ZnO/4H-SiC heterojunction measured by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 92, no. 19, pp. 192107-1192107-3, May 2008.
    [6] P. D. C. King, T. D. Veal, C. E. Kendrick, L. R. Bailey, S. M. Durbin, and C. F. McConville, “InN/GaN valence band offset: High-resolution x-ray photoemission spectroscopy measurements,” Phys. Rev. B, vol. 78, no. 3, pp. 033308-1033308-4, Jul. 2008.
    [7] S. C. Su, Y. M. Lu, Z. Z. Zhang, C. X. Shan, B. H. Li, D. Z. Shen, B. Yao, J. Y. Zhang, D. X. Zhao, and X. W. Fan, “Valence band offset of ZnO/Zn0.85Mg0.15O heterojunction measured by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 93, no. 8, pp. 082108-1082108-3, Aug. 2008.
    [8] S. M. Sze, Semiconductor Devices: Physics and Technology. New York: Wiley, 2002.
    [9] J. Tersoff, “Theory of semiconductor heteojunctions: The role of quantum dipoles,” Phys. Rev. B, vol. 30, no. 8, pp. 4874-4877, Oct. 1984.
    [10] J. Tersoff, “Schottky barriers and semiconductor band structures,” Phys. Rev. B, vol. 32, no. 10, pp. 6968, Nov. 1985.
    [11] J. Robertson and B. Falabretti, “Band offsets of high K gate oxides on III-V semiconductors,” J. Appl. Phys., vol. 100, no. 1, pp. 014111-1-014111-8, Jul. 2006.
    [12] J. A. Cooper, Jr., “Advances in SiC MOS technology,” Phys. Stat. Sol. (a), vol. 162, no. 1, pp. 305-320, Jul. 1997.
    [13] A. Goetzberger and J. C. Irvin, “Low-temperature hysteresis effects in metal-oxide silicon capacitors caused by surface-state trapping,” IEEE Trans. Electron Devices, vol. 15, no. 12, pp. 1009-1014, Dec. 1968.
    [14] L. K. J. Vandamme, X. Li, and D. Rigaud, “1/f noise in MOS devices, mobility or number fluctuation?,” IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 1936-1945, Nov. 1994.
    [15] D. V. Kuksenkov, H. Temkin, R. Gaska, and J. W. Yang, “Low-frequency noise in AlGaN/GaN heterostructure field effect transistors,” IEEE Electron Device Lett., vol. 19, no. 7, pp. 222-224, Jul. 1998.
    [16] F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 1926-1935, Nov. 1994.
    [17] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise,” Rep. Prog. Phys., vol. 44, no. 5, pp. 479-532, May 1981.
    [18] A. L. McWhorter, “1/f noise and germanium surface properties,” Semiconductor Surface Physics, Philadephia PA, University of Pennsylvania Press, pp. 207-228, 1957.
    [19] A. van der Ziel, “Flicker noise in electronic devices,” Advances in Electronics and Electron Physics, New York:Academic, vol. 49, pp. 225-297, 1979.
    [20] C. Surya, and T. Y. Hsiang, “A thermal activation model for 1/f noise in Si-MOSFETs,” Solid-State Electron., vol. 31, no. , pp. 959-964, 1988.
    [21] W. Y. Ho, C. Surya, K. Y. Tong, W. Kim, A. E. Botcharev, and H. Morkoc, “Characterization of flicker noise in GaN-based MODFET’s at low drain bias,” IEEE Trans. Electron Devices, vol. 46, no. , pp. 1099-1104, 1999.

    ch3
    [1] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique,” Appl. Phys. Lett., vol. 91, no. 23, pp. 231113-1231113-3, Dec. 2007.
    [2] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique,” J. Appl. Phys., vol. 108, no. 7, pp. 073119-1073119-6, Oct. 2010.
    [3] G. L. Martinez, M. R. Curiel, B. J. Skromme, and R. J. MolnaR, “Surface recombination and sulfide passivation of GaN,” J. Electron. Mater., vol. 29, no. 3, pp. 325-331, Mar. 2000.
    [4] C. Huh, S. W. Kim, H. M. Kim, D. J. Kim, “ Effect of alcohol-based sulfur treatment on Pt Ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 78, no. 13, pp. 1942-1944, Mar. 2001.
    [5] Y. J. Lin, C. D. Tsai, Y. T. Lyu, and C. T. Lee, “X-ray photoelectron spectroscopy study of (NH4)2Sx-treated Mg-doped GaN layers,” Appl. Phys. Lett., vol. 77, no. 5, pp. 687-689, Jul. 2000.
    [6] Y. J. Lin and C. T. Lee, “Surface analysis of (NH4)2Sx-treated InGaN using x-ray photoelectron spectroscopy,” J. Vac. Sci. Technol. B, vol. 19, no. 5, pp. 1734-1738, Sep./Oct. 2001.
    [7] C. T. Lee, Y. J. Lin, and D. S. Liu, “Schottky barrier height and surface state density of Ni/Au contacts to (NH4)2Sx-treated n-type GaN,”Appl. Phys. Lett., vol. 79, no. 16, pp. 2573-2575, Oct. 2001.
    [8] P. S. Chen, T. H. Lee, L. W. Lai, and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer,” J. Appl. Phys., vol. 101, no. 4, pp. 024507-1024507-4, Jan. 2007.
    [9] P. S. Chen, C. S. Lee, J. T. Yan, and C. T. Lee, “Performance improvement and mechanism of chlorine-treated InGaN-GaN light-emitting diodes,” Electrochem. Solid State Lett., vol. 10, no. 6, pp. H165-167, Mar. 2007.
    [10] C. T. Lee, C. C. Lin, H. Y. Lee, and P. S. Chen, “Changes in surface state density due to chlorine treatment in GaN Schottky ultraviolet photodetectors,” J. Appl. Phys., vol. 103, no. 9, pp. 094504-1094504-4, May 2008.
    [11] D. R. Lide and A. P. R. Friderikse, CRC Handbook of Chemistry and Physics, 75th ed. (CRC, Boca Raton, FL, 1995)
    [12] C. S. Lee, Y. J. Lin, and C. T. Lee, “Investigation of oxidation mechanism for ohmic formation in Ni/Au contacts to p-type GaN layers,” Appl. Phys. Lett., col. 79, no. 23, pp. 3815-3817, Dec. 2001.
    [13] O. Ambacher, “ Growth and applications of group III-nitrides,” J. Phys. D: Appl. Phys. D, vol. 31, no. 20, pp. 2653-2710, Oct. 1998.
    [14] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride,” Appl. Phys. Lett., vol. 76, no. 4, pp. 511-513, Jan. 2000.
    [15] J. J. Chen, B. P. Gila, M. Hlad, A. Gerger, F. Ren, C. R. Abernathy and S. J. Pearton, “Determination of MgO/GaN heterojunction band offsets by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 88, no. 4, pp. 042113-1042113-3, Jan. 2006.
    [16] J. J. Chen, B. P. Gila, M. Hlad, A. Gerger, F. Ren, C. R. Abernathy, and S. J. Pearton, “Band offsets in the Sc2O3/GaN heterojunction system,” Appl. Phys. Lett., vol. 88, no. 14, pp. 142115-1142115-3, Apr. 2006.
    [17] H. B. Fan, G. S. Sun, S. Y. Yang, P. F. Zhang, R. Q. Zhang, H. Y. Wei, C. M. Jiao, X. L. Liu, Y. H. Chen, Q. S. Zhu, and Z. G. Wang, “Valence band offset of ZnO/4H-SiC heterojunction measured by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 92, no. 19, pp. 192107-1192107-3, May 2008.
    [18] P. D. C. King, T. D. Veal, C. E. Kendrick, L. R. Bailey, S. M. Durbin, and C. F. McConville, “InN/GaN valence band offset: High-resolution x-ray photoemission spectroscopy measurements,” Phys. Rev. B, vol. 78, no. 3, pp. 033308-1033308-4, Jul. 2008.
    [19] S. C. Su, Y. M. Lu, Z. Z. Zhang, C. X. Shan, B. H. Li, D. Z. Shen, B. Yao, J. Y. Zhang, D. X. Zhao, and X. W. Fan, “Valence band offset of ZnO/Zn0.85Mg0.15O heterojunction measured by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 93, no. 8, pp. 082108-1082108-3, Aug. 2008.
    [20] C. T. Lee and H. W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN,” Appl. Phys. Lett., vol. 76, no. 17, pp. 2364-2366, Apr. 2000.
    [21] J. B. Webb, H. Tang, S. Rolfe, and J. A. Bardwell, “Semi-insulating C-doped GaN and high-mobility AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy,” Appl. Phys. Lett., vol. 75, no. 7, pp. 953-955, Aug. 1999.

    ch4
    [1] A. V. Vertiatchikh and L. F. Eastman, “Effect of the Surface and Barrier Defects on the AlGaN/GaN HEMT Low-Frequency Noise Performance,” IEEE Electron Device Lett., vol. 24, no. 9, pp. 535-537, Sep. 2003.
    [2] C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. H. Kuo, C. S. Chang, T. K. Lin, T. K. Ko, and J. J. Tang, “High temperature performance and low frequency noise characteristics of AlGaN/GaN/AlGaN double heterostructure metal-oxide-semiconductor heterostructure field-effect-transistors with photochemical vapor deposition SiO2 layer,” Jpn. J. Appl. Phys., vol. 44, no. 4B, pp. 2458-2461, Apr. 2005.
    [3] Y. Z. Chiou, “Noise analysis of AlGaN/GaN metal-oxide-semiconductor heterostructure field effect transistors with photochemical-vapor deposition SiO2 layers,” Jpn. J. Appl. Phys., vol. 44, no. 4B, pp. 2465-2468, Apr. 2005.
    [4] C. H. Liu, K. T. Lam, S. J. Chang, C. K. Wang, and Y. S. Sun, “Flicker noise of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor with a photo-CVD SiO2 layer,” J. Electrochem. Soc., vol. 154, no. 2, pp. H119-H123, Dec. 2007.
    [5] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise,” Rep. Prog. Phys., vol. 44, no. 5, pp. 479-532, May 1981.

    ch5
    [1] J. J. Chen, B. P. Gila, M. Hlad, A. Gerger, F. Ren, C. R. Abernathy and S. J. Pearton, “Determination of MgO/GaN heterojunction band offsets by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 88, no. 4, pp. 042113-1042113-3, Jan. 2006.
    [2] J. J. Chen, B. P. Gila, M. Hlad, A. Gerger, F. Ren, C. R. Abernathy, and S. J. Pearton, “Band offsets in the Sc2O3/GaN heterojunction system,” Appl. Phys. Lett., vol. 88, no. 14, pp. 142115-1142115-3, Apr. 2006.
    [3] H. B. Fan, G. S. Sun, S. Y. Yang, P. F. Zhang, R. Q. Zhang, H. Y. Wei, C. M. Jiao, X. L. Liu, Y. H. Chen, Q. S. Zhu, and Z. G. Wang, “Valence band offset of ZnO/4H-SiC heterojunction measured by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 92, no. 19, pp. 192107-1192107-3, May 2008.
    [4] P. D. C. King, T. D. Veal, C. E. Kendrick, L. R. Bailey, S. M. Durbin, and C. F. McConville, “InN/GaN valence band offset: High-resolution x-ray photoemission spectroscopy measurements,” Phys. Rev. B, vol. 78, no. 3, pp. 033308-1033308-4, Jul. 2008.
    [5] S. C. Su, Y. M. Lu, Z. Z. Zhang, C. X. Shan, B. H. Li, D. Z. Shen, B. Yao, J. Y. Zhang, D. X. Zhao, and X. W. Fan, “Valence band offset of ZnO/Zn0.85Mg0.15O heterojunction measured by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 93, no. 8, pp. 082108-1082108-3, Aug. 2008.
    [6] S. M. Sze, Semiconductor Devices: Physics and Technology. New York: Wiley, 2002.
    [7] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique,” J. Appl. Phys., vol. 108, no. 7, pp. 073119-1073119-6, Oct. 2010.
    [8] Y. L. Chiou and C. T. Lee, “(NH4)2Sx-treated AlGaN/GaN MOS-HEMTs with ZnO gate dielectric layer,” J. Electrochem. Soc., vol. 158, no. 2, pp. H156-H159, Jan. 2011.
    [9] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, no. 3, pp. 1785-1791, May/Jun. 2000.
    [10] J. Robertson and B. Falabretti, “Band offsets of high k gate oxides on III-V semiconductors,” J. Appl. Phys., vol. 100, no. 1, pp. 014111-1-014111-8, Jul. 2006.
    [11] J. F. Wager, “Transparent electronics: Schottky barrier and heterojunction considerations,” Thin Solid Films, vol. 516, no. 8, pp. 1755-1764, Jul. 2008.
    [12] J. Tan, M. K. Das, J. A. Cooper, Jr. and M. R. Melloch, “Metal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC,” Appl. Phys. Lett., vol. 70, no. 17, pp. 2280-2282, Apr. 1997.
    [13] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n -type GaN,” Appl. Phys. Lett., vol. 82, no. 24, pp. 4304-4306, Jun. 2003.
    [14] B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt, “Band lineup between silicon and transparent conducting oxides,” Appl. Phys. Lett., vol. 97, no. 3, pp. 032116-1-032116-3, Jul. 2010.
    [15] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560-566, Mar. 2001.
    [16] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Trapping effects and microwave power performance in AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 465-471, Mar. 2001.
    [17] C. T. Lee, Y. J. Lin, and D. S. Liu, “Schottky barrier height and surface state density of Ni/Au contacts to (NH4)2Sx-treated n-type GaN,” Appl. Phys. Lett., vol. 79, no. 16, pp. 2573-2575, Oct. 2001.
    [18] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise,” Rep. Prog. Phys., vol. 44, no. 5, pp. 479-532, May 1981.
    [19] V. Desmaris, M. Rudziñski, N. Rorsman, P. R. Hageman, P. K. Larsen, H. Zirath, T. C. Rödle, and H. F. F. Jos, “Comparison of the DC and microwave performance of AlGaN/GaN HEMTs grown on SiC by MOCVD with Fe-doped or unintentionally doped GaN buffer layers,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2413-2417, Sep. 2006.
    [20] S. C. Binari, P. B. Klein, and T. E. Kazior, “Trapping effects in GaN and SiC microwave FETs,” Proc. IEEE, vol. 90, pp. 1048-1058, Jun. 2002.

    ch6
    [1] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, no. 3, pp. 1785-1791, May/Jun. 2000.
    [2] J. Tan, M. K. Das, J. A. Cooper, Jr. and M. R. Melloch, “Metal-oxide-semiconductor capacitors formed by oxidation of polycrystalline silicon on SiC,” Appl. Phys. Lett., vol. 70, no. 17, pp. 2280-2282, Apr. 1997.
    [3] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n -type GaN,” Appl. Phys. Lett., vol. 82, no. 24, pp. 4304-4306, Jun. 2003.
    [4] J. Robertson and B. Falabretti, “Band offsets of high k gate oxides on III-V semiconductors,” J. Appl. Phys., vol. 100, no. 1, pp. 014111-1-014111-8, Jul. 2006.
    [5] B. Höffling, A. Schleife, F. Fuchs, C. Rödl, and F. Bechstedt, “Band lineup between silicon and transparent conducting oxides,” Appl. Phys. Lett., vol. 97, no. 3, pp. 032116-1-032116-3, Jul. 2010.
    [6] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560-566, Mar. 2001.
    [7] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Trapping effects and microwave power performance in AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 465-471, Mar. 2001.
    [8] P. S. Chen, T. H. Lee, L. W. Lai, and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer,” J. Appl. Phys., vol. 101, no. 4, pp. 024507-1024507-4, Jan. 2007.
    [9] P. S. Chen, C. S. Lee, J. T. Yan, and C. T. Lee, “Performance improvement and mechanism of chlorine-treated InGaN-GaN light-emitting diodes,” Electrochem. Solid State Lett., vol. 10, no. 6, pp. H165-167, Mar. 2007.
    [10] C. T. Lee, C. C. Lin, H. Y. Lee, and P. S. Chen, “Changes in surface state density due to chlorine treatment in GaN Schottky ultraviolet photodetectors,” J. Appl. Phys., vol. 103, no. 9, pp. 094504-1094504-4, May 2008.
    [11] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental studies on 1/f noise,” Rep. Prog. Phys., vol. 44, no. 5, pp. 479-532, May 1981.
    [12] V. Desmaris, M. Rudziñski, N. Rorsman, P. R. Hageman, P. K. Larsen, H. Zirath, T. C. Rödle, and H. F. F. Jos, “Comparison of the DC and microwave performance of AlGaN/GaN HEMTs grown on SiC by MOCVD with Fe-doped or unintentionally doped GaN buffer layers,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2413-2417, Sep. 2006.
    [13] S. C. Binari, P. B. Klein, and T. E. Kazior, “Trapping effects in GaN and SiC microwave FETs,” Proc. IEEE, vol. 90, pp. 1048–1058, Jun. 2002.
    [14] I. Saidi, M. Gassoumi, H. Maaref, H. Mejri, and C. Gaquière, “Self-heating and trapping effects in AlGaN/GaN heterojunction field-effect transistors,” J. Appl. Phys., vol. 106, no. 5, pp. 054511-1054511-7, Sep. 2009.

    下載圖示 校內:2016-05-31公開
    校外:2016-05-31公開
    QR CODE