簡易檢索 / 詳目顯示

研究生: 戴郁伶
Tai, Yu-Ling
論文名稱: 結合衛星雷射測距與衛星測高估計地心變動
Geocenter Variation derived by Satellite Laser Ranging and Satellite Altimetry
指導教授: 郭重言
Kuo, Chung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 84
中文關鍵詞: 地心變動衛星雷射測距衛星測高
外文關鍵詞: Geocenter variation, SLR, satellite altimetry
相關次數: 點閱:128下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地心變動定義為地球質量中心 (Center of mass, CM) 相對於幾何中心(Center of figure, CF)之位置變化,一般以一階項之球諧係數表示。由於地心變動的為地球系統之質量重新分布,其反應出地球質量平衡及以及固體地球與地球系統中之質量交換。由於地心變動為地球質量之重新分布造成,因此透過質量變化之觀測量可精確地估計地心變動。本研究主要結合SLR及GRACE 提供之重力場解與衛星測高資料,透過Swenson 等人2008 年提出之演算法以及疊代計算方式估計地心變動,結果顯示疊代計算之成果發現使用疊代計算之成果精度較Swenson 等人[2008]提出之演算法精度更為提升,並將估計成果與使用不同資料計算之地心變動做比較。使用測高資料結合衛星雷射測距之重力場解亦可獲得相當於結合GRACE 資料相當之估計成果,顯示衛星雷射測距之重力場解亦可有效估計地心變動之情形。將估計之一階項變化量加入高階項係數計算海水質量,計算其相對於衛星測高觀測量之差值,結果顯示由GRACE 重力場解估計之一階項結合高階項係數計算成果最符合測高衛星之觀測成果,其次為衛星雷射測距重力場解
    估計之成果。最後本研究加入衛星雷射測距自1993 年提供之重力場解估計長時間地心變動,以其影響量計算缺漏之一階項並結合GRACE 提供之高階項係數以計算地表之質量變化,結果顯示加入一階項後可影響計算之質量變化最大有50%之影響。於研究特定區域之質量變化發現,格陵蘭及南極洲之冰原質量以 -80.84±2.21 mm/yr 及-9.80±2.29 mm/yr 的速率下降,全球海水面則以0.72±0.15 mm/yr 速率上升。因流入裏海區之河水量漸少導致該區海水質量以17.52±1.83 mm/yr 速率減小。

    Geocenter variation is defined as the displacement of the Earth’s center of mass (CM) relative to its center of figure (CF) and is generally represented as the temporal variations of degree 1 geopotential coefficients. Because
    geocenter variation results from the mass redistribution within the earth system, it can be accurately determined if mass changes on the Earth are well known. In the present study, SLR and GRACE gravity field solutions combining with
    steric-corrected altimetry are used to calculate the geocenter motions by the algorithm from Swenson et al. [2008] and the iteration algorithm. The results computed by the iteration algorithm agree well with those by the algorithm from Swenson et al. [2008] and even have higher precisions. The results derived from SLR and GRACE solutions combining with steric-corrected altimetry data are consistent, indicating that not only GRACE data but also
    SLR geopotential solutions be used to estimate geocenter motions. The mass variations computed using the estimated degree 1 coefficients from GRACE combining with higher degree-order coefficients agree better with the steric-corrected altimetry measurements than from SLR; however, the
    SLR-estimated geocenter motions cover a longer time span starting from 1993. Finally, the SLR-derived geocenter motions and GRACE gravity solutions were combined to calculate the mass changes. The results show that the
    differences of the computed mass variations can change up to 50% of total mass changes in amplitudes when the estimated geocenter motions were used. The ice sheets in Greenland and Antarctica are melting at the rates of -85.38 ± 1.26 mm/yr and -10.54 ± 0.55 mm/yr, respectively, and global ocean
    mass variations (within latitude ±66o) is rising at a rate of 0.72 ± 0.15 mm/yr.The ocean mass in the Caspian Sea is also decreasing at a rate of -16.61±1.37 mm/yr because of less river discharge.

    Abstract....................................................I 摘要 .....................................................III 誌謝 ......................................................IV Table of Contents ......................................... V List of Tables ......................................... VIII List of Figures .......................................... IX Chapter 1 ................................................. 1 1.1 Background and Motivation ............................. 1 1.2 Outlines .............................................. 5 Chapter 2 ................................................. 7 2.1 GRACE ................................................. 7 2.2 SLR .................................................. 11 2.3 Satellite Altimetry .................................. 16 2.3.1 Introduction to Satellite Altimetry ................ 16 2.3.2 Principle of Satellite Altimetry ................... 20 2.3.3 Corrections of Altimetry measurements................................................ 23 Chapter 3 ................................................ 27 3.1 Background Theory .................................... 27 3.2 Data Processing ...................................... 30 3.2.1 SLR Data ........................................... 30 3.2.2 GRACE data ......................................... 31 3.2.3 Altimetry data ..................................... 33 3.2.4 PGR ................................................ 39 3.3 Estimation of Geocenter Variation .................... 40 3.3.1 Method 1—Algorithm by Swenson et al........................................................ 40 3.3.2 Method 2—Iterative Procedure .......................................................... 43 Chapter 4 ................................................ 47 4.1 Validation of Computing Methodology .................. 47 4.2 Geocenter Motions Derived from SLR ................... 50 4.3 A comparison of Geocenter Motions Derived From SLR and GRACE..................................................... 52 4.4 Recovered Degree 1 Coefficients ...................... 54 Chapter 5 ................................................ 59 5.1 Decorrelation Reduction .............................. 60 5.2 Gaussian Filter ...................................... 62 5.3 Leakage Reduction .................................... 63 5.4 Regional Study ....................................... 65 Chapter 6 ................................................ 73 Reference ................................................ 76

    陳盈樺,利用測高衛星、重力衛星、NCEP氣候模型估計地心與C¬20變動,國立成功大學測量及空間資訊學系碩士論文,2009.

    鐘子淵,利用GRACE、測高資料、海洋模型估計地心變動,國立成功大學測量及空間資訊學系碩士論文,2012.

    Altamimi, Z., X. Collilieux, and L. Métivier. ITRF2008: an improved solution of the International Terrestrial Reference Frame, J. Geodesy, doi:10.1007/s00190-011-0444-4, 2011.

    Antonov, J.I., S. Levitus, and T.P. Boyer. Steric sea level variations during 1957-1994: Importance of salinity, J. Geophys. Res., 107 (C12), 8013-8021, 2002.

    Appleby, G.M., G. Kirchner, J. McGarry, T. Murphy, C.E Noll, E.C Pavlis, M. R. Peralman, and F. Pierron. Current trend in Satellite Laser Ranging, American Geophysical Union, Fall Meeting, 2010.

    Bindoff, N.L., J. Willebrand, V. Artale, A. Cazenave, J. Gregory, S. Gulev, K. Hanawa, C. Le Quéré, S. Levitus, Y. Nojiri, C.K. Shum, L.D. Talley and A. Unnikrishnan. Observations: Oceanic Climate Change and Sea Level. In: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Blewitt, G., D. Lavallée, P. Clarke, and K. Nurutdinov. A new global mode of Earth deformation: seasonal cycle detected, Science 294 (5550), 2342–2345, 2001.
    Blewitt, G. and P. Clarke. Inversion of Earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution, J. Geophys. Res., 108, NO. B6, 2311, doi:10.1029/2002JB002290, 2003.

    Blewitt, G. Self-consistency in Reference Frames, Geocenter Definition, and Surface Loading of the Solid Earth, J. Geophys. Res., 108(B2), 2103, doi:10.1029/2002JB002082, 2003.

    Blewitt, G., W.C. Hammond, C. Kreemer, H.-P. Plag, S. Stein, and E. Okal. GPS for real-time earthquake source determination and tsunami warning systems, J. Geod., Vol. 83, pp. 335-343, doi: 10.1007/s00190-008-0262-5, 2009.
    Bouillé, F., A. Cazenave, J.M. Lemoine, and J.F. Crétaux. Geocentre motion from the DORIS space system and laser data to the Lageos satellites: Comparison with surface loading data, Geophys. J. Int., 143, 71–82, 2000.

    Chambers, D.P., J. Wahr, and R.S. Nerem. Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, L13310, doi:10.1029/2004GL020461, 2004.

    Chambers, D.P.. Evaluation of new GRACE time-variable gravity data over the ocean, Geophys. Res. Lett., 33: L17603, doi:10.1029/2006GL027296, 2006a.

    Chambers, D.P.. Observing seasonal steric sea level variations with GRACE and satellite altimetry, J. Geophys. Res., 111, C03010, doi:10.1029/2005JC002914, 2006b.

    Chambers, D.P., M. Tamisiea, R.S. Nerem, and J. Ries. Effects of ice melting on GRACE observations of ocean mass trends, Geophys. Res. Lett., 34, L05610, doi:10.1029/2006GL029171, 2007.

    Chen, J.L., C.R. Wilson, R.J. Eanes, and R.S. Nerem. Geophysical interpretation of observed geocenter variations, J. Geophys. Res., 104 (B2) , 2683– 2690, 1999.

    Chen, J.L., C.R. Wilson, B.D. Tapley, and J.C. Ries. Low degree gravitational changes from GRACE: Validation and interpretation, Geophys. Res. Lett., 31, L22607, doi:10.1029/2004GL021670, 2004.

    Chen, J.L., M. Rodell, C.R. Wilson, and J.S. Famiglietti. Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates, Geophys. Res. Lett., 32, L14405, doi: 10.1029/2005GL022964, 2005.

    Cheng, M.K., J.C. Ries, and B.D. Tapley. Variations of the Earth's Figure Axis from Satellite Laser Ranging and GRACE, J. Geophys. Res., 116, B01409, doi: 10.1029/2010JB000850, 2011.

    Cheng, M.K., B.D. Tapley, and J.C. Ries. Deceleration in the Earth’s oblateness, J. Geophys. Res., V118, 1-8, doi: 10.1002/jgrb.50058, 2013.

    Cheng, M. K., J.C. Ries, and B.D. Tapley. Geocenter Variations from Analysis of SLR data, in Reference Frames for Applications in Geosciences, International Association of Geodesy Symposia, Vol. 138, 19-26 (Springer-Verlag Berlin Heidelberg), 2013.

    Collilieux, X., Z. Altamimi, J. Ray, T. van Dam, and X. Wu. Effect of the satellite laser ranging network distribution on geocenter motion estimation, J. Geophys. Res., 114, Art. No. B04402, 2009.

    Crétaux, J.-F., L. Soudarin, F.J.M. Davidson, M.-C. Gennero, M. Berge-Nguyen, and A. Cazenave. Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data, J. Geophys. Res., 107 (B12), 2374, doi: 10.1029/2002JB001820, 2002.

    Davis, J.L., P. Elósegui, J.X. Mitrovica, and M.E. Tamisiea. Climate-driven deformation of the solid Earth from GRACE and GPS, Geophys. Res. Lett., 31, L24605, doi:10.1029/2004GL021435, 2004.

    Davis, J.L., M.E. Tamisiea, P. Elósegui, J.X. Mitrovica, and E.M. Hill. A statistical filtering approach for gravity recovery and climate experiment (GRACE) gravity data, J. Geophys. Res., 113:B04410, doi:10.1029/2007JB005043, 2008.

    Dong, D., J.O. Dickey, Y. Chao and M.K. Cheng. Geocenter variations caused by atmosphere, ocean and surface ground water, Geophys. Res. Lett., 24, 15, 1867-1870, 1997.

    Dong, D., T. Yunck, and M. Heflin. Origin of the international terrestrial reference frame, J. Geophys. Res., 108 (B4), Art. No. 2200, 2003.

    Duan, X.J., J.Y. Guo, C.K. Shum, and W. van der Wal. On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions, J. Geod., 83, 1095-1106, doi:10.1007/s00190-009-0327-0, 2009.

    Dunn, C., W. Bertiger, Y. barSever, S. Desai, B. Haines, D. Kuang, G.Franklin, I. Harris, G. Kruizinga, T. Meehan, S. Nandi, D. Nguyen, T. Rogstad, J.B. Thomas, J. Tien, L. Romans, W. Watkin, S.C. Wu, S. bettadpur, and J. Kim. Instruments of GRACE: GPS augments gravity measurements, GPS world, 14:16-28, 2003.

    Eanes, R.J., S. Kar, S.V. Bettadpur, and M.M. Watkins. Low frequency geocenter motion determined from SLR tracking (abstract), Eos Trans. AGU, 78(46), Fall Meet. Suppl., F146, 1997.

    Guo, J.Y., Y.B. Li, Y. Huang, H.T. Deng, S.Q. Xu, and J.S. Ning. Green’s function of the deformation of the Earth as a result of atmospheric loading, Geophys. J. Int., 159, 53–68, doi:10.1111/j.1365-246X.2004.02410.x, 2004.

    Guo, J. Y., X.J. Duan, and C.K. Shum. Non-isotropic Gaussian Smoothing and Leakage Reduction for Determining Mass Changes over Land and Ocean using GRACE data, Geophys. J. Int., 181: 290–302. doi: 10.1111/j.1365-246X.2010.04534.x, 2010.

    Hofmann-Wellenhof, B. and H. Moritz. Physical geodesy, Springer Wien New York, 3-14, 2006.

    Ishii, M. and M. Kimoto. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections, J. Oceano., 65, 287-299, doi: 10.1007/s10872-009-0027-7, 2009.

    Kang, Z.G., B. Tapley, J.L. Chen, J. Ries, and S. Bettadpur. Geocenter variations derived from GPS tracking of the GRACE satellites, J. Geoid., 83 (10), 895-901, 2009.

    Keiskanen, W.A., and H. Moritz. Physical Geodesy, W. H. Freeman, New York, 1967.

    Klees, R., E.A. Revtova, B.C. Gunter, P. Ditmar., E. Oudman, H.C. Winsemius., and H.H.G. Savenije. The design of an optimal filter for monthly GRACE gravity models, Geophys. J. Int., 175:417-432, doi: 10.1111/j.1365-246X.2008.03922.x, 2008.

    Kuo, C.Y., C.K. Shum, J.Y. Guo, Y. Yi, A. Braun, I. Fukumori, K. Matsumoto, T. Sato, and K. Shibuya. Southern Ocean Mass Variation Studies Using GRACE and Satellite Altimetry, Earth, Planets and Space, 60, 477-485, 2008.

    Kusche, J. and E.J.O. Schrama. Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data, J. Geophys. Res., 110, B09409, doi:10.1029/2004JB003556, 2005.

    Kusche, J. Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models, J. Geod., 81: 733-749. doi: 10. 1007/s00190- 007- 0143- 3, 2007.

    Kuzin, S.P., S.K. Tatevian, S.G. Valeev, and V.A. Fashutdinova. Studies of the geocenter motion using 16-years DORIS data, Advances in Space Research, doi: 10.1016/j.asr.2010.06.038, 2010.

    Lavallée, D.A., T. van Dam, G. Blewitt, and P.J. Clarke. Geocenter motions from GPS: a unified observation model, J. Geophys. Res., 111 (B5), Art. No. B05405, 2006.

    Lemoine, F., S. Klosko, C. Cox, and S. Luthcke. The Development of NASA Gravity Field Models and their Dependence on SLR. NASA/CP-2003-212248,(13th International Workshop on Laser Ranging: Proceedings from the Science Session), 2003.

    Munekane, H.. Ocean mass variations from GRACE and tsunami gauges, J. Geophys. Res., 112, B07403, doi:10.1029/2006JB004618, 2007.

    Nerem, R.S. and G.T. Mitchum. Observation of sea level change from satellite altimetry, in: Sea Level Rise, edited by: Douglas, B. C., Kearney, M. S., and Leatherman, S. P., Academic Press, San Diego, 121–163, 2001.

    Pealman, M., C. Noll, J. McGarry, W. Gutner, and E. Pavlis. International Laser Ranging Service, 13th International Workshop on Laser Ranging, 2003.

    Pattullo, J., W. Munk, R. Revelle, and E. Strong. The seasonal oscillation in sea level, J. Mar. Res., 88-156, 1955.

    Peltier, W.R.. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE, Ann. Rev. Earth Planet. Sci., 32,111–149, 2004.
    Ray, J. (Ed.). IERS Analysis Campaign to Investigate Motions of the Geocenter, IERS Technical Note 25. Central Bureau of IERS, Paris, France, p. 121, 1999.

    Rosmorduc, V., J. Benveniste, E. Bronner, S. Dinardo, O. Lauret, C. Maheu, M. Milagro, and N. Picot. Radar Altimetry Tutorial, J. Benveniste and N. Picot Ed., http://www.altimetry.info, 2011.

    Shum, C.K. et al., Inter-annual water storage changes in Asia from GRACE data, R. Lal et al. (eds.), Climate Change and Food Security in South Asia, 69, doi 10.1007/978-90-481-9516-9_6, c Springer Science+Business Media, 2010.

    Swenson, S. and J. Wahr. Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett., 33: L08402, doi: 10.1029/2006JB004882, 2006.

    Swenson, S., D.P. Chambers, and J. Wahr. Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B08410, doi:10.1029/2007JB005338, 2008.

    Tapley, B.D., S. Bettadpur, J.C. Ries, P.F. Thompson, and M.M. Watkins. GRACE measurements of mass variability in the Earth system, Science, 305, 503-505, 2004a.

    Tapley, B.D., S. Bettadpur, M. Watkins, and C. Reigber. The Gravity Recovery and Climate Experiment: mission overview and early results, Geophys. Res. Lett., 31, L09607, 10.1029/2004GL019920, 2004b.

    Touboul, P., E. Willemenot, B. Foulon, and V. Josselin. Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution, Boll. Geof. Teor. Appl., 40:321–32, 1999.

    Torge, W.. Geodesy (3rd edition), New York: de Gruyter, 1980.

    Trupin, A.S., M.F. Meier, and J.M. Wahr. The effect of melting glaciers on the Earth’s rotation and gravitational field: 1965 – 1984, Geophys. J. Int., 108, 1 – 15, 1992.
    van der Wal, W., E. Kurtenback, J. Kusche, and B. Vermeersen. Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment, Geophys. J. Int., 187, 797-812, doi:10.1111/j.1365-246.X.2011.05206.x, 2011.

    Wahr, J.. Deformation induced by polar motion, J. Geophys. Res., 90(B11): 9363 - 9368, 1985.

    Wahr, J., M. Molenaar, and F. Bryan. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103 (B12), 30, 205-30, 229, 1998.

    Wahr, J., S. Swenson, V. Zlotnicki, I. Velicogna. Time-veriable gravity from GRACE: First results, J. Geophys. Res. Lett., Vol. 31, L11501, doi:10.1029/ 2004GL019779, 2004.

    Watkins, M.M and R.J. Eanes. Observations of tidally coherent diurnal and semidiurnal variations in the geocenter, Geophys. Res. Lett., VOL. 24, NO. 17, PAGES 2231-2234, 1997.

    Wu, X.P., D.F. Argus, M.B. Heflin, E.R. Ivins, and F.H. Webb. Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data, Geohpys. Res. Lett., 29 (24), Art. No. 2210, 2002.

    Wu, X., M.B. Heflin, E.R. Ivins, and I. Fukumori. Seasonal and interannual global surface mass variations from multisatellite geodtice data. J. Geophys. Res., 111 (B9), Art. No. B09401, 2006.

    Wu, X., J. Ray, and T. van Dam. Geocenter motion and its geodetic and geophysical implications, J. Geodyn., 58(1) 44-61, 2012.

    下載圖示 校內:2018-08-30公開
    校外:2018-08-30公開
    QR CODE