簡易檢索 / 詳目顯示

研究生: 涂凱翔
Tu, Kai-Hsiang
論文名稱: 強耦合與弱耦合模擬計算方法於超音速衝擊流對熱防護材料熱燒蝕之研究
Studies of Strong Coupling and Weak Coupling Methods in Thermal Ablation Simulation of Supersonic High Temperature Jet Impinging on Thermal Protection Materials
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 129
中文關鍵詞: 熱防護材料熱燒蝕熔化強/弱耦合兩相流
外文關鍵詞: Thermal Protection Material, Thermal Ablation, Two-phase Flow
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對單/兩相流衝擊流流場對材料之熱燒蝕進行分析,對強耦合單/兩相衝擊流對銅板燒蝕模擬建立熔化模型,利用Fluent內建之固化/熔化模型進行材料燒蝕計算。當銅板達到1358K並吸收相變化潛熱後搭配外掛程式控制燒蝕邊界動網格退縮,使用流體域之時間尺度來同時直接求解流場、固體熱傳以及邊界燒蝕退縮,強耦合算法為最準確,但同時其計算成本也是相當高。對於實際工程應用而言,不僅僅需要符合工程要求,還需滿足其他條件如成本及可行性等。
    在考慮高昂計算成本及可行性的條件下,本研究提出弱耦合算法來彌補強耦合昂貴計算成本的弱點,所謂弱耦合算法可以以較少的計算成本來分別對不同計算域使用不同時間尺度大小求解流場與固體熱傳,故本文也針對在單/兩相衝擊流對銅板燒蝕模擬方面建立三種弱耦合燒蝕方式的熔化模型,並且都加入燒蝕外掛程式以增加模型的靈活度,討論各種燒蝕模型之特性,每種熔化燒蝕模型都有其各自代表的物理機制,選擇合適的模型是模擬成功的關鍵。
    本文將探討強/弱耦合之計算成本、單/兩相之流場熱負載影響及其貢獻度分析、單/多粒徑對熱通量及燒蝕影響之討論、熱負載在燒蝕退縮平/凹面上之敏感度分析、各種熔化模型之優缺點及燒蝕耦合時間尺度建議分析。本文Method 3模型考慮衝擊凹面後的各種效應,將會與實驗情況接近,而模擬結果會與實驗交互驗證以確保模擬的準確性及其應用價值。

    Previous literatures show that the computational cost of supersonic two phase flow is very high, which is caused by the small time step size of the flow. First of all, considering many order of magnitude disparity of time scales between supersonic flow and structure heat transfer, three different weak coupling methods are proposed to simulate the thermal ablation process of supersonic jet impinging on a thermal protection material (TPM) in this study. The weak coupling method is found to provide significant computational savings by using different time scale sizes for fluid and solid domains. Then, this study also develops user-defined function (UDF) for boundary ablation dynamic mesh. Since there are many factors that affect thermal ablation, this study investigates the contribution of thermal loading in single/two phase flow, particle sizes, particle trajectory, coupling time scale and wall surface profiles due to thermal ablation. Numerical results show that particle heat flux is the main parameter that determines the magnitude of the ablation thickness, 80% of the total heat flux is contributed by particle impinging. Moreover, when selecting coupling time scale, the coupling time step 0.2 second is suggested in this this study. Furthermore, Method 3 model in this thesis considers a variety of effects after the particles impact the concave surface, which is expected to be close agreement with the experimental findings, and the simulation results will be validated with the experiments to ensure the its accuracy.

    摘要 I ABSTRACT III 誌謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XVIII 符號索引 XXIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 熱防護材料綜述與基本原理 2 1.2.2 熱燒蝕模型相關文獻 6 1.2.3 衝擊流流場與數值熱傳模擬相關文獻 13 1.3 研究動機與目的 28 第二章 理論基礎與數學模型 29 2.1 連續相模型 29 2.1.1 連續相之基本假設 29 2.1.2 連續相統御方程式 30 2.1.3 紊流模型 32 2.1.4 近壁面模型與壁面函數法 33 2.2 離散相模型 36 2.2.1 離散相之基本假設 37 2.2.2 粒子-壁面之邊界條件 37 2.2.3 粒子相之運動方程式 39 2.2.4 粒子衝擊於壁面之能量及熱傳方程式 40 2.2.5 Parcel顆粒法 42 2.3 固化熔化模型 43 2.3.1 熔化模型基本假設 43 2.3.2 焓-孔隙度模型 43 2.3.3 固化/熔化能量方程式 44 2.4 數值耦合方法 46 2.4.1 強耦合 46 2.4.2 弱耦合 46 2.5 動態自適應網格法和動網格法 48 2.5.1 梯度自適應法 48 2.5.2 動網格法 49 第三章 研究方法與模型建立 51 3.1 流場模型建立與驗證 51 3.1.1 流場共軛熱傳模型與邊界條件 51 3.1.2 網格獨立測試 55 3.1.3 準穩態流場驗證 58 3.1.4 強耦合/弱耦合算法 59 3.1.5 強耦合/弱耦合熱傳驗證與時間成本 62 3.2 離散相條件設定 65 3.2.1 粒子之性質與邊界條件 65 3.2.2 粒子的壁面邊界條件 66 3.3 熔化模型建立與用戶自定義函數(UDF) 68 3.3.1 Method 1 71 3.3.2 Method 2 73 3.3.3 Method 3 75 第四章 結果與討論 77 4.1 單相流流場與熔化模型結果分析 77 4.1.1 單相流流場結果分析 77 4.1.2 單相流流場下熔化模型結果分析 80 4.2 兩相流(單粒徑)流場與熔化模型結果分析 82 4.2.1 單粒徑兩相流流場結果分析 82 4.2.2 單粒徑兩相流下熔化模型結果分析 86 4.2.3 單粒徑兩相流下平面凹面熱負載 92 4.3 兩相流(多粒徑)流場與熔化模型結果分析 98 4.3.1 多粒徑兩相流流場結果分析 98 4.3.2 多粒徑兩相流下熔化模型結果分析 103 4.3.3 多粒徑兩相流下平面/凹面熱負載 109 4.4 兩相流流場熱負荷貢獻度與耦合時間尺度分析 114 4.4.1 兩相流流場熱負荷貢獻度結果分析 114 4.4.2 弱耦合算法耦合時間尺度結果分析 117 第五章 結論與未來工作 122 5.1 結論 122 5.1.1 熱燒蝕模型建立分析 122 5.1.2 外掛程式之模擬討論 123 5.2 未來工作 124 參考文獻 125

    【1】 D. E. Glass, "Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles," 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p. 2682, 2008.
    【2】 J. Poulopoulos, "Cooling Methods in Combustion Chambers and Nozzles," Project of Rocket Propulsion Systems, Department of Mechanical Engineering and Aeronautics, University of Patras, 2020.
    【3】 J. Koo, M. Miller, J. Weispfenning, and C. Blackmon, "Silicone polymer composites for thermal protection system: fiber reinforcements and microstructures," Journal of Composite Materials, vol. 45, no. 13, pp. 1363-1380, 2011.
    【4】 https://reurl.cc/rDAdMb
    【5】 C. Cagran, "Thermal conductivity and thermal diffusivity of liquid copper," Dipoma thesis, Institute of Experimental Physics, Graz University of Technology, 2000.
    【6】 A. E. K. Marc J. Assael, and Konstantinos D. Antoniadis, "Reference Data for the Density and Viscosity of Liquid Copper and Liquid Tin," Journal of Physical and Chemical Reference Data, 39(3),033105, 2010
    【7】 A. Y. Vikas and S. Soni, "Simulation of melting process of a phase change material (PCM) using ANSYS (fluent)," International Research Journal of Engineering and Technology (IRJET), vol. 4, no. 5, 2017.
    【8】 林章裕, 林文山, 謝啟訓, "固態燃料推進器尾焰對於銅板之沖蝕試驗及熱傳模擬,"中華民國第27屆燃燒與能源學術研討會, 論文編號016, April 2017.
    【9】 徐文奇, "垂直發射裝置中燃氣兩相沖擊流場數值研究," MS thesis. 哈爾濱工程大學, 2007.
    【10】 G. Zhang, G. F. Ma, H. D. Kim, and Z. Lin, "Numerical Analysis of Supersonic Impinging Jet Flows of Particle-Gas Two Phases," Processes, vol. 8, no. 2, p. 191, 2020.
    【11】 陳韋丞, "超音速高溫氣體衝擊擋板之數值模擬分析," 國立成功大學航空太空工程學系碩士論文, 2019.
    【12】 B. York, N.Sinha, S. Dash, L. Anderson, L. Gominho, J. Koo, F. Cheung, "Steady/transient plume-launcher interactions and progress towards particulate/surface layer modeling," 33rd Aerospace Sciences Meeting and Exhibit, p. 255, 1995.
    【13】 郭忠義, "超音速高溫兩相流衝擊流場之模擬分析," 國立成功大學航空太空工程學系碩士論文, 2020.
    【14】 林泉昇, "超音速高溫衝擊流對熱防護材料燒/沖蝕之模擬分析," 國立成功大學航空太空工程學系碩士論文, 2020.
    【15】 A. Tabiei, "Multiphysics Coupled Fluid/Thermal/Structural Simulation for Hypersonic Reentry Vehicles," Journal of Aerospace Engineering, vol. 25, no. 2, pp. 273-281, 2012.
    【16】 J. Huang, P. Li, and W. Yao, "Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method," Acta Astronautica, vol. 146, pp. 368-377, 2018.
    【17】 A. Neale, D. Derome, B. Blocken, and J. Carmeliet, "CFD calculation of convective heat transfer coefficients and validation–Part 2: Turbulent flow," International Energy Agency-ECBCS Annex, vol. 41, 2006.
    【18】 T. Kura, E. Fornalik-Wajs, J. Wajs, and S. Kenjeres, "Turbulence models impact on the flow and thermal analyses of jet impingement," MATEC Web of Conferences, vol. 240, pp. 1-6, 2018.
    【19】 Ansys, Inc. Fluent Theory Guide 15.0 Chapter 4 Turbulence4.14 Subdivisions of the Near-Wall Region, USA, 2013.
    【20】 Ansys, Inc. Fluent Theory Guide 15.0 Chapter 4 Turbulence4.14 Near-Wall Model and Wall Function, USA, 2013.
    【21】 Ansys, Inc. Fluent Theory Guide 15.0 Chapter 16 Discrete Phase 16.13.1. Coupling Between the Discrete and Continuous Phases, USA, 2013.
    【22】 Ansys, Inc. Fluent Theory Guide 15.0 Chapter 16 Discrete Phase 16.7 Wall-Particle Reflection Model Theory, USA, 2013.
    【23】 Ansys, Inc. Fluent Theory Guide 15.0 Chapter 23 Modeling Discrete Phase 23.4 Setting Boundary Conditions for the Discrete Phase, USA, 2013.
    【24】 Ansys, Inc. Fluent Theory Guide 15.0 Particle–Wall Impingement Heat Transfer Theory, USA, 2013.
    【25】 J. Welty, Fundamentals of Momentum Heat and Mass Transfer, John Wiley & Sons, USA, 2014.
    【26】 M. H. Khademia, "Integral Energy Equation Model For Heat Convection To Turbulent Boundary Layer On A Flat Plate," Frontiers in Heat and Mass Transfer (FHMT), pp. 7-33, 2016.
    【27】 K.J.Reid, "Enthalpy-Porosity Technique For Modeling Convection-Diffusion Phase Change : Application To The Melting Of A Pure Metal," Numerical Heat Transfer, Part A Applications, vol. 13, no. 3, pp. 297-318, 1988.
    【28】 T. K. Murtadha, "Thermal Efficiency for Passive Solar Chimney with and Without Heat Storage material," Journal of Engineering, vol.26, no. 5, pp. 1-19, 2020.
    【29】 Q. Zhang and S. Cen, "Multiphysics Modeling: Numerical Methods and Engineering Applications," Press Computational Mechanics Series Elsevier, Tsinghua University, 2015.
    【30】 M. J. Berger and J. Oliger, "Adaptive mesh refinement for hyperbolic partial differential equations," Journal of computational Physics, vol. 53, no. 3, pp. 484-512, 1984.
    【31】 Ansys, Inc. Fluent Theory Guide 15.0 Chapter 21 Adapting the Mesh 21.3.1. Gradient Adaption Approach, USA, 2013.
    【32】 Ansys, Inc. Fluent Theory Guide 15.0 Chapter 10 Modeling Flows Using Sliding and Dynamic Meshes 10.6.2.1.2 Diffusion-Based Smoothing, USA, 2013.
    【33】 L. A. Segel and M. Slemrod, "The quasi-steady-state assumption: a case study in perturbation," SIAM review, vol. 31, no. 3, pp. 446-477, 1989.
    【34】 徐本恩, "固體火箭發動機內絕緣層燒蝕試驗研究綜述," 南昌航空大學學報:自然科學版vol 27, no 3, 2010.
    【35】 Y. L. Shi, A. Mujumdar, and M. Ray, "Parametric study of heat transfer in turbulent gas− solid flow in multiple impinging jets," Industrial & engineering chemistry research, vol. 42, no. 24, pp. 6223-6231, 2003.

    無法下載圖示 校內:2027-08-12公開
    校外:2027-08-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE