| 研究生: |
林津裕 Lin, Chin-Yu |
|---|---|
| 論文名稱: |
銀鈀合金型/銀鈀金合金型打線在可靠度測試下之介面反應 The Interfacial Reactions in Pd-alloyed/Au-Pd-alloyed Ag wire bonds under reliability tests |
| 指導教授: |
呂國彰
Lu, Kuo-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 銀鈀合金型打線 、銀鈀金合金型打線 、可靠度測試 、介面反應 |
| 外文關鍵詞: | Ag-Pd alloyed wire, Ag-Pd-Au alloyed wire, Reliability Test, Interfacial Reaction |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要藉由SEM-EDS與SEM-EBSD分析觀察銀鈀合金(97%Ag-3%Pd)/銀鈀金合金 (89%Ag-3%Pd-8%Au)打線在可靠度測試過後之界面反應及微觀組織。研究結果顯示,當進行高溫儲存試驗(HTST)、高加速溫濕試驗(HAST)後,銀鈀合金線會形成Ag3Al2、Ag2Al、Ag3Al等相,而銀鈀金合金線形成(Ag,Au)3Al2、(Ag,Au)2Al、(Ag,Au)3Al、(Ag,Au)4Al等相,且銀鈀金合金打線在介面處的介金屬化合物(Intermetallic Compound, IMC)生長速率、鋁墊隨時間消耗程度會快過合金型銀鈀打線。在HTST持溫500小時後,可以發現在銀鈀金合金型(Ag-3Pd-8Au)打線下的鋁墊已經反應耗盡,並且在介金屬化合物中出現裂縫(Crack),而銀鈀合金型(Ag-3Pd)打線則在持溫1000小時,才有明顯的裂縫生成,但兩者裂縫生長速度均為緩慢。另外,較慢的銀-鋁間介金屬化合物生長速率及特定的介金屬相生成都有助於接點性質提升,而較複雜的介金屬化合物,將使可靠性質較為不佳,故銀鈀合金型(Ag-3Pd)打線的開發對於改善打線接合處的可靠度性質有正面幫助,未來或許可以成為合金型打線的主流材料之一。
In this research, we focused on the Ag-alloyed wire bonding reliability in interface. Owing to copper wires induced a higher stress to the bond pad and high oxidation voltage, these disadvantage implies the issue of reliability with copper wires. Thus, seeking a newly alternative materials is needed. Being similar with gold, silver has emerged as the first choice. When it comes to silver wires, the low tensile stress of pure silver, sulfuration and oxidation would lead to a decreasing reliability, so pure silver were not ideal for wire bonding. Alloying silver with gold and palladium can not only increase the tensile stress but also prevent the sulfuration and oxidation. As a result, we compared the interfacial reaction and microstructure in Ag-3Pd/Ag-3Pd-8Au bonding wires after HAST and HTST reliability tests by SEM-EDS and SEM-EBSD. Ag-3Pd-8Au has higher consumption of aluminum pad and growth rate of IMCs than Ag-3Pd under HAST and HTST. We suggested this phenomenon is probably owing to the gold addition. Ferurthmore, the Ag-3Pd-8Au wire came with multi-layer IMCs may cause the decreasing in reliability. Finally, the lower growth rate of IMCs and certain IMCs growth would provide a stable property of wire bonding. The Ag-3Pd bonding wires maybe become a main choice of material in wire bonding.
[1] S. Kaimori, T. Nonaka and A. Mizoguchi, “The development of Cu bonding wire with oxidation-resistant metal coating”, IEEE Trans. Adv. Packag., Vol. 29, No. 2, pp. 228-231, 2006.
[2] H. Xu, C. Liu, V.V. Silberschmidt and Z. Chen, “A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads”, Scripta Mater., Vol. 61, No. 2, pp. 165-168, 2009.
[3] T. Uno, “Bong reliability under humid environment for coated copper wire and bare copper wire”, Microelectron. Reliab., Vol. 51, No. 1,pp. 148-156, 2011.
[4] T. Uno, “Enhancing bondability with coated copper bonding wire”, Microelectron. Reliab., Vol. 51, No. 1,pp. 88-96, 2011.
[5] S. Kaimori, T. Nonaka and A. Mizoguchi, “Development of ‘hybrid bonding wire’,” SEI Tech. Rev., No. 63, pp.14-18, 2006.
[6] T. Uno, K. Kimura and T. Yamada, “Surface-enhanced copper bonding wire for LSI and its bond reliability under humid environments”, Proc. 17th Euro. Microelectron. Packag. Conf., Rimini, Italy, pp. 1486-1495, 2009.
[7] K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho and J. T. Moon, “Reliability study of low cost alternative Ag bonding wire with various bond pad materials”, in Proc. 11th Electron. Packag. Technol. Conf., pp. 851–857, 2009.
[8] B. Valdez, M. Schorr, R. Zlatev, M. Carrillo, M. Stoytcheva, L. Alvarez, A. Eliezer and N. Rosas, ” Corrosion Control in Industry”, DOI: 10.5772/51987, pp. 27, 2012.
[9] E. Sancaktar, P. Rajput and A. Khanolkar, “Correlation of Silver Migration to the Pull Out Strength of Silver Wire Embedded in an Adhesive Matrix”, IEEE Trans. Compon. Packag. Manufac.Technol.,Vol. 28, No. 4, pp. 771-780, 2005.
[10] K. Vu, “Silver Migration – The Mechanism and Effects on Thick-Film Conductors”, Material Science Engineering 234–Spring, pp. 1-21, 2003.
[11] 謝宗雍,” 電子構裝技術簡介” ,電子月刊第三卷第七期,pp.57-76, 1997年7月.
[12] S.K. Prasad, “Advanced Wirebond Interconnection Technology”, Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 2004.
[13] L. England and T. Jiang, “Reliability of Cu Wire Bonding to Al Metallization”, ECTC, pp. 1604-1613, 2007.
[14] C.D. Breach and F.W. Wulff, “A brief review of selected aspects of the materials science of ball bonding”, Microelectronics Reliability 50, pp.1-20, 2010.
[15] L.J. Kai, L.Y. Hung, L.W. Wu, M.Y. Chiang, D.S. Jiang, C.M. Huang, Y.P. Wang, “Silver Alloy Wire Bonding”, Proc 62th Electronics Component Technology Conf, San Deigo, California, May., pp.1163-1168.
[16] T.H. Chuang, H.C. Wanga, C.H. Tsaia, C.C. Changa, C.H. Chuanga,
J.D. Leeb, H.H. Tsaib, “Thermal stability of grain structure and material properties in an annealing-twinned Ag-8Au-3Pd alloy wire”, Scripta Materialia 67, pp.605-608, 2012.
[17] S. Kumar, H. Kwon, Y.I. Heo, S.H. Kim, J.S. Hwang, J.T. Moon, “Thermosonic ball bonding behavior of Ag-Au-Pd alloy wire”, IEEE 15th EPTC, 2013.
[18] J.S. Cho, K.A. Yoo , S.J. Hong, J.T. Moon, Y.J. Lee, W. Han, H. Park, S.W. Ha, S.B. Son, S.H. Kang, K.H. Oh, “Pd Effects on the Reliability in the Low Cost Ag Bonding Wire”, Proc 60th Electronics Component Technology Conf, Les Vegas, Nevada, June., pp.1541-1546, 2010.
[19] T.H. Chuang, C.C. Chang, C.H. Chuang, J.D. Lee, H.H. Tsai, “Thermal and Growth of Intermetallics in an Annealing-Twinned Ag-8Au-3Pd Wire Bonding Package During Reliability Tests”, IEEE Transaction on component, packaging and manufacturing technology, Vol. 3, No. 1, January 2013.
[20] S. Cui, W. Zhang, L. Zhang, H. Xu, Y. Du, ”Assessment of Atomic Mobilities in fcc Al-Ag-Zn Alloys”, Journal of Phase Equilibria & Diffusion, Dec, Vol. 32 Issue 6, pp.512-524, 2011.
[21] JESD22-A103C, High Temperature Storage Life (HTST), JEDEC Solid State Technology Association, November 2004.
[22] JESD22-A110D, Highly Accelerated Temperature and Humidity Stress Test (HAST), JEDEC Solid State Technology Association, November 2010.
[23] J.J. Stephens, Internal Memorandum, Sandia National Laboratories, Albuquerque, NM, March 2, 1989.
[24] A. Kumar and Z. Chen, “Interdependent Intermetallic Compound Growth in an Electroless Ni-P/Sn-3.5Ag Reaction Couple”, Journal of Electronic Materials, Vol. 40, No. 2,pp. 213-223, 2011.
[25] K. Kalantar-Zadeh, B.F., Nanotechnology-Enabled Sensor: Springer; 1 edition, October 31, 2007.
[26] 黃宏勝、林麗娟,“FE-SEM/CL/EBSD分析技術簡介”,工業材料雜誌,201期,pp.99-108,2003年9月.
[27] 汪建民,“材料分析”,中國材料科學學會,1988年.
[28] A.J. Schwartz, M. Kumar and B.L. Adams, Electron Backscatter Diffraction in Materials Science, Kluwer Academic, New York, 2000.
[29] J.L. Murray, H. Okamoto and T.B.Massalski, “The Al-Au (Aluminum-Gold) System”, Bulletin of Alloy Phase Diagrams, Vol. 8, No. 1, pp. 20-30, 1987.
[30] C.H. Cheng, H.L. Hsiao, S.I. Chu, Y.Y. Shieh, C.Y. Sun and Peng, “Low Cost Silver Alloy Wire Bonding with Excellent Reliability Performance”, Electronics Component and Technology Conf., pp.1569-1573, 2013.
[31] R. Guo, T. Hang, D. Mao, M. Li, K. Qian, Z. Lv, H.Chiu, ”Behavior of intermetallics formation and evolution in Ag–8Au–3Pd alloy wire bonds”, Journal of Alloys and Compounds, Vol. 588, pp. 622–627, 2014.
校內:2024-08-28公開