| 研究生: |
王地寶 Wang, Di-Bao |
|---|---|
| 論文名稱: |
低雷諾數下二維機翼氣動力過渡現象之實驗研究與數學模型建立 Experimental Study and Mathematical Modeling of Aerodynamic Transition for 2-D Airfoil at Low Reynolds Numbers |
| 指導教授: |
蕭飛賓
Hsiao, Fei-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 拓樸 、尖點劇變 、劇變論 、氣動力過渡 、低雷諾數 、驟變 |
| 外文關鍵詞: | Topology, Sudden Change, Cusp Catastrophe, Catastrophe Theory, Low Reynolds Number, Aerodynamic Transition |
| 相關次數: | 點閱:58 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以理論及實驗之方法研究NACA 633-018二維機翼在雷諾數由1.32×10^4 至1.09×10^5間空氣動力係數及流場的過渡特性。在理論部分,本研究將劇變論應用於氣動力過渡問題之數學模型建立,從探討函數局部奇異性出發,用連續函數來敘述氣動力特性之非連續行為;同時利用劇變模型來預測在過渡區域尚未被發現的氣動力特性。在實驗部分,風洞實驗量測結果成功地驗證了劇變論在氣動力過渡問題上的適用性,並且藉由視流觀察提供了該理論在此處之物理本質。最後,本文從尖點劇變模型出發,對本機翼之氣動力過渡現象予以更明確之定義及闡釋。
結合實驗觀測結果與此數學模型,可推論氣動力係數驟變現象與其變化特性隨雷諾數及攻角的過渡行為,本質上乃是流場拓樸結構之相變過程。由劇變模型所預測之氣動力驟變點與實驗量測所得結果相當吻合,且誤差範圍在攻角小於0.5度,在雷諾數小於2000。這在相當程度上表示在氣動力過渡過程中機翼升力或阻力與雷諾數及攻角構成一個三次超曲面的關係,可信其將來必定能為相關之氣動力過渡研究開創一個新的研究方向。
In this thesis, the theoretical and the experimental approaches were performed to study the transitional characteristics of aerodynamic coefficients and flow field of the NACA 633-018 airfoil at Re ranging from 1.32×10^4 ~ 1.09×10^5. For theoretical approach, the catastrophe theory was applied to model the aerodynamic transition problem and to predict some aerodynamic characteristics undiscovered before. The so-called catastrophe theory describes the discontinuous phenomena with continuous functions based on the study of singularities of nonlinear functions. Results of aerodynamic loading measurement well verified the validity of the catastrophe theory on the aerodynamically transitional problems and flow visualization provided some physical essences of the flow field about the theory employed here. Finally, the aerodynamic transition of the airfoil was redefined and reexamined through the cusp catastrophe model.
Combining the mathematical model and the experimental results, it can be deduced that the transition and sudden change of aerodynamic coefficients, in essence, is a phase-changing process of the topological structure of the flow field. The predicted sudden-changing points of the aerodynamic coefficients match very well with the experimental results within the error margin of α less than 0.5 degree and Re less than two thousand. It indicates that the lift or drag and Re as well as α actually constitutes a cubic hypersurface relationship during the transitional process, which is believed to be a new direction of related aerodynamic researches.
1. Abbott, I. H. and Von Doenhoff, A. E.,“Theory of Wing Sections Including a Summary of Airfoil Aata,”New York, Dover Publications, 1959.
2. Bastedo, W.G. and Mueller, T. J., “Spanwise Variation of Laminar Separation Bubbles on Wings at Low Reynolds Number”, Journal of Aircraft, Vol. 23, Sept. 1986, pp. 687-694.
3. Carmichael, B.H., “Low Reynolds Number Airfoil Survey”, Vol. I, NASA Contractor Report 165803, November 1981.
4. Castrigiano, D.P.L. and Sandra, A. H., “Catastrophe Theory,”Addison-Wesley, Advanced Book Program, 1993.
5. Grundy, T .M., Keefe, G .P. and Lowson, M. V., “Effects of Acoustic Disturbances on low Re Aerofoil Flows”, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Reston, VA, AIAA, Inc., 2001, pp. 91-113.
6. Hsiao, F.B. and Hsu, C.C., “Numerical Prediction of Aerodynamic Performance for Low Reynolds Number Airfoils”, Journal of Aircraft, Vol. 26, July 1989, pp. 689-692.
7. Hsiao, F.B., Liu, C.F. and Tang, Z., “Aerodynamic Performance and Flow Structure Studies of a low Reynolds Number Airfoil”, AIAA Journal, Vol. 27, Feb. 1989, pp. 129-137.
8. Hsiao, F.B., Chang, C.Y., Hsu, C.C. and Wang, D.B., “Experimental Study of Aerodynamic Performance for Finite Wing at Low Reynolds Numbers “, J. Chinese Society of Mechanical Engineers, Vol. 23, No. 6, 2002, pp. 517~524.
9. Hunt, J.C.R., Abell, C.J., Peterka, J.A. and Woo, H., “Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles: Applying Topology to Flow Visualization”, Journal of Fluid Mechanics, Vol. 86, Part 1, 1978, pp. 179-200.
10. Barlow, J.B., William, H.R. and Pope, A., “Low-Speed Wind Tunnel Testing”, 3rd ed. New York, John Wiley & Sons, 1999.
11. Laitone, E.V., “Aerodynamic Lift at Reynolds Numbers Below 7 ×104,” AIAA Journal, Vol. 34, No. 9, September 1996.
12. Lin, J.C.M. and Pauley, L. L., “Low-Reynolds-number Separation on an Airfoil,” AIAA Journal, Vol. 34, No. 8, Aug. 1996, pp. 1570-1577.
13. McGhee, R.J., Walker, B.S. and Millard, B.F., "Experimental Results for the Eppler 387 Airfoil at Low Reynolds Numbers in the Langley Low-Turbulence Pressure Tunnel," NASA TM 4062, Oct. 1988.
14. McMasters, J.H. and Henderson, M.L., “Low Speed Single Element Airfoil Synthesis”, Tech. Soaring, Vol. 2, No. 2, 1980, pp. 1-21.
15. Mueller, T. J. and Batill, S. M., “Experimental Study of Separation on a Two-Dimensional Airfoil at Low Reynolds numbers”, AIAA Journal, Vol.20, April 1982, pp.457-463.
16. Mueller, T. J., Pohlen, L. J., Conigliaro, P.E. and Jansen, B.J., Jr., “The Influence of Free-stream Disturbances on Low Reynolds Number Airfoil Experiments”, Experiments in Fluids, Vol. 1, no. 1, 1983, p. 3-14.
17. Mueller, T. J., “The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis”, Journal of Aircraft, Vol. 22, Sept. 1985, pp. 763-770.
18. Mueller, T. J. and Delaurier, J.D., “An Overview of Micro Aerial Vehicle Aerodynamics”, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Reston, VA, AIAA, Inc., 2001, pp. 1-10.
19. Nagamatsu, H.T. and Cuche, D.E., “Low Reynolds Number Aerodynamic Characteristics of Low-drag NACA 63-208 Airfoil”, Journal of Aircraft, Vol. 18, Oct. 1981, pp. 833-837.
20. O’Meara, M.M. and Mueller, T.J., “Laminar Separation Bubble Characteristics on an Airfoil at Low Reynolds Numbers”, AIAA Journal, Vol. 25, No. 8, Aug. 1987.
21. Pelletier, Alain and Mueller, T. J., “Low Reynolds Number Aerodynamics of Low-aspect-ratio, Thin/flat /cambered-plate Wings”, Journal of Aircraft, Vol. 37, No. 5, Sept.-Oct. 2000, pp. 825-832.
22. Blevins, R.D., Flow-Induced Vibration,”2nd Ed., New York, Van Nostrand Reinhold, 1990, pp. 46.
23. Raghunathan, S., Harrison, J. R. and Hawkins, B.D., “Thick Airfoil at Low Reynolds Number and High Incidence”, Journal of Aircraft, Vol. 25, July 1988, pp. 669-671.
24. Ripley, M. D. and Pauley, L.L., "The Unsteady Structure of Two Dimensional Steady Laminar Separation", Physics of Fluids A, Vol. 5, No. 12, 1993, pp. 3099-3106.
25. Schmidt, G. S. and Mueller, T. J., “Analysis of Low Reynolds Number Separation Bubbles Using Semiempirical Methods”, AIAA Journal, Vol. 27, Aug. 1989, pp. 993-1001.
26. Selig, M. S. et al., “Summary of Low-Speed Airfoil Data ---Volume 1 and 2”, SoarTech Publications, 1995.
27. Spurk, J.H., “Fluid Mechanics”, New York, Springer, 1997, pp.422-423.
28. Tobak, M. and Peake, D.J., Topology of Two-Dimensional and Three-Dimensional Separated Flows,” AIAA Paper 79-1480, AIAA 12th Fluid And Plasma Dynamics Conference, July 23-25, 1979, Williamsburg, Virginia.
29. Thom, R., “Structural Stability and Morphogenesis”, translated from the French edition, as updated by Fowler, D.H., Addison-Wesley, Advanced Book Program,1989.
30. Traub, L.W, Moeller, B. and Rediniotis, O., “Low-Reynolds-number Effects on Delta-wing Aerodynamics”, Journal of Aircraft, Vol. 35, No. 4, July-Aug. 1998, pp. 653-656.
31. Yang, W.J., “Handbook of Flow Visualization,” New York, Hemisphere Pub. Corp., 1989.
32. 顏澤賢著,高宣揚主編,「現代系統理論」,遠流出版公司,1993
33. Saunders P.T.著, 蕭欣忠,呂素齡譯,「劇變論入門」,曉園出版社,1988
34. 曹亮吉,「代數基本定理」,科學月刊,1985年1月,181期
35. 林琦焜,「線性代數的基本定理」,數學傳播,1995,十九卷二期
36. 陳順宇,「多變量分析」,華泰書局,1998