| 研究生: |
鍾瀚揚 Chung, Han-Yang |
|---|---|
| 論文名稱: |
球磨與鋁鎳添加對LiMn2O4導電及電化學機構之探討 Conduction and Electrochemistry Mechanism of Al3+ and Ni2+ doped LiMn2O4 with or without Ball Milling |
| 指導教授: |
方滄澤
Fang, Tsang-Tse |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 鋰電池 、電阻率 、交流阻抗分析 |
| 外文關鍵詞: | EIS, Li-ion battery, resistivity |
| 相關次數: | 點閱:68 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由文獻得知,添加鋁鎳對於陰極材料LiMn2O4的充放電循環數有明顯提升。本實驗針對添加鋁鎳陰極材料的導電性質以及電化學性質作探討
陰極材料LiMn2O4電阻率在降溫過程中,溫度280K附近電阻率有陡昇的現象,隨著鋁、鎳離子添加量的增加,電阻率陡升的現象就慢慢消失了,而且電阻率會呈現先降低後增加的趨勢。
陰極材料LiMn2O4經過球磨處理後與退火處理後的粉末,利用交流阻抗分析,其電荷轉移阻抗與鋰離子擴散係數有明顯的不同。鋁、鎳離子添加的粉末LiNixMn2-xO4與LiAlxMn2-xO4利用交流阻抗分析,可發現電荷轉移阻抗呈現持平的現象,而鋰離子擴散係數與室溫電阻率呈現相反的趨勢。
Decreasing of the temperature causes the phenomenon which the resisitity arise suddenly near temperature 280K. That is the manganese spinel undergoes a phase transition between high -temperature cubic and low temperature orthorhombic phase. Substitution of manganese cause disappearance of the phase transition characteristic of a stoichiometric spinel and affects the conduction mechanism of the material.
The powder with ball milling has different electrochemical properties from it with annealing. The material LiMn2O4 doped with Ni2+ or Al3+ ion also shows the different electrochemical properties.
[1] 工業材料 130期 104, 許雪萍
[2] Allen J.Bard and Larry R. Faulkner, Electrochemical Methods :Fundamentals and Applications 2nd edition, John Wiley and Sons.
[3] C. Ho, I. D. Raistrick, and R. A. Huggins, J. Electrochem. Soc. 127,343(1980)
[4] M. G. S. R. Thomas, P. G. Bruce, and J. B. Goodenough, J.Electrochem.Soc.vol 132, p1521(1985)
[5] Hirofumi Kanoh, Qi Feng, Takahiro Horotsu, and Kenta Ooi, J.Electrochem. vol 143, p2610(1996)
[6] S.Bach, J. Farcy, and J.P. Pereira-Ramos, Solid State Ionic 110, 193(1998)
[7] N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials 2nd edited, Oxford University Press (1979), p16
[8] N.F. Mott, Conduction in Non-Crystalline materials, Oxford Science publications (1987), p21
[9] N.F Mott, Metal – Insulator Transitions 2nd edition, Taylar&Francis(1990),p36.
[10] N.F Mott, Metal – Insulator Transitions 2nd edition, Taylar&Francis(1990),p51.
[11] Uichiro Mizutani, Introduction to the Electron Theory of Metals, Cambridge University press (2001)
[12] B. Chattopadhyay, A. Poddar, S. Das, C. Majumder, R. Ranganathan, J. Alloys and Compounds 28-33,366(2004)
[13] Adv. in phys, v18, Jan 1969
[14] Charles Kittel,”Introduction to Solid State Physics”seventh edition,p297
[15] Adv. in phys, v18, Jan 1969
[16] Friedrich Walz J.Phys.:Condens. Matter 14 R285-R340, 2002
[17] Verwey E J W and Haayman P W Physica 8, 979, 1941.
[18] Anderson P W Phys. Rev. B 102 1008, 1956
[19] Y. Shumakawa, T. Numata, and J. Tabuchi, J.Solid State Chem 131, 138-143(1997)
[20] Phys.Rev.Letter 81, 4460
[21] J. Molenda, K. Swierczek, M. Molenda, J. Marzec, Solid State Ionic, 135, 53-59(2000)
[22] J. Marzec, K. Swierczek, J. Przewoznik, J. Molenda, D.R. Simon, E.M. Kelder, J. Schoonman, Solid State Ionics, 146, 225-237(2002)
[23] J. Molenda, W. Ojczyk, M. Marzec, J. Marzec, J. Przewoznik, R, Dziembaj, M. Molenda, Solid State Ionics, 157, 73-79(2003)
[24] K.Swierczek, J. Marzec, M.Marzec, J.Molenda, Solid State Ionics, 157, 89-93(2003)
[25] J. Molenda, J. Marzec, K. Swierczek, W, Ojczyk, M. Ziemnicki, M. Molenda, M. Drozdek, R. Dziembaj, Solid State Ionics 171, 215-227(2004)
[26] R. Cabanel, G. Barral, J. P. Diard, B. Le Gorrec, C. Montella, J. of Applied Electrochem., 23 ,93 (1989)