| 研究生: |
邱柏勳 CIOU, BO-SYUN |
|---|---|
| 論文名稱: |
鈣鈦礦沉積在氧化鋅上的熱穩定性研究 Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO |
| 指導教授: |
黃榮俊
Huang, J. C. A. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 氧化鋅 、鈣鈦礦 、穩定性 |
| 外文關鍵詞: | ZnO, perovskite, instability |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於鈣鈦礦為直接能隙半導體材料、於可見光波段具優異的光吸收係數、載子擴散長度及雙極傳輸(ambipolar transport)等優異的光電特性,以鈣鈦礦作為吸收材料應用在太陽能電池上,其光電轉換效率已快速推升至22.1%。而於之前的研究中,鈣鈦礦太陽能電池主要以二氧化鈦作為電子傳輸層,然而二氧化鈦的電子遷移率太低,不易將電子快速截取有機會造成電子電洞復合,且需高溫燒結來製備。氧化鋅的電子遷移率較二氧化鈦高且與二氧化鈦能階相近,因此以氧化鋅取代二氧化鈦作為電子傳輸層,將可提升元件效率。因此我們以氧化鋅作為電子傳輸層應用在鈣鈦礦太陽能電池上,進一步發現在氧化鋅上面成長鈣鈦礦時,鈣鈦礦形成顏色跟鈣鈦礦成長在二氧化鈦上的不一樣,經過XRD分析後,發現形成的鈣鈦礦又分解回碘化鉛,說明氧化鋅易與鈣鈦礦產生化學反應,致使鈣鈦礦結構不穩定,為此我們探討氧化鋅退火溫度及其中的鋅氧比對鈣鈦礦形成的影響。實驗中發現鈣鈦礦的穩定性與氧化鋅的鋅含量有關,鋅的多寡會影響鈣鈦礦的穩定性,最後做了一個惡化實驗,發現鋅會跟碘化鉛反應形成碘化鋅和鉛,證實了鋅的含量多寡會影響鈣鈦礦的穩定性。
In this research, we study the instability in perovskite (CH3NH3PbI3) thin films deposited on ZnO. We manufactured ZnO films by using ion beam sputter (IBS) system to sputter ZnO target with argon flux and deposited perovskite film on the top of ZnO by solvent engineering method. We analyzed the characteristics of as-formed perovskite on the ZnO substrate by GIXRD, SEM, AES, UV-VIS…etc. The analysis of XRD and UV-VIS show that the stability in perovskite has relation to the baking temperature of perovskite and the Zn/O2 ratio of the ZnO substrate. The results indicate that the instability of perovskite increases as the Zn content increases. Furthermore, we deposited perovskite film on pure Zn film for comparison. The GIXRD shows that the reaction takes place between Zn and PbI2 with a chemical reaction as follows:
Zn+PbI2→ZnI2+Pb
It prove that the stability of perovskite is dominated by the Zn content.
1. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
2. http://www.nrel.gov/ncpv/images/efficiency_chart.jpgClaeys, C., & Simoen, E. (Eds.). (2011). Germanium-based technologies: from materials to devices. Elsevier.
3. Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 13(9), 897-903.
4. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
5. Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093.
6. Park, N. G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18(2), 65-72.
7. F. Hao, C. C. Stoumpos, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2014, 136, 8094.
8. Bai, S., Wu, Z., Wu, X., Jin, Y., Zhao, N., Chen, Z., ... & Liu, R. (2014). High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Research,7(12), 1749-1758.
9. J.-H. Im, H.-S. Kim, N.-G. Park, APL Mater. 2014, 2, 081510.
10. Im, J. H., Jang, I. H., Pellet, N., Grätzel, M., & Park, N. G. (2014). Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature nanotechnology, 9(11), 927-932.
11. Cui, X. P., Jiang, K. J., Huang, J. H., Zhou, X. Q., Su, M. J., Li, S. G., ... & Song, Y. L. (2015). Electrodeposition of PbO and its in situ conversion to CH 3 NH 3 PbI 3 for mesoscopic perovskite solar cells. Chemical Communications,51(8), 1457-1460.
12. Christians, J. A., Fung, R. C., & Kamat, P. V. (2013). An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society,136(2), 758-764.
13. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2012, 2, 591.
14. H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel, N.-G. Park,Nano Lett. 2013, 13, 2412.
15. J. Burschka, N. Pellet, S.-J. Moon,Nature 2013, 499, 316.
16. D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, RSC Adv.2013, 3, 18762.
17. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat. Nanotechnol. 2014, DOI:10.1038/NNANO.2014.181.
18. D.-Y. Son, J.-H. Im, H.-S. Kim, N.-G. Park, J. Phys. Chem. C 2014, 118,16567.
19. K.-C. Wang, J.-Y. Jeng, P.-S. Shen,Y.-C. Chang, E. W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, T.-C. Wen,Sci. Rep. 2014, 4, 4756.
20. Zuo, C., & Ding, L. (2015). Solution‐Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small, 11(41), 5528-5532.
21. Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques.Nature photonics, 8(2), 133-138.
22. Liang, L., Huang, Z., Cai, L., Chen, W., Wang, B., Chen, K., ... & Fan, B. (2014). Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells. ACS applied materials & interfaces, 6(23), 20585-20589.
23. Tseng, Z. L., Chiang, C. H., & Wu, C. G. (2015). Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells. Scientific reports,5.
24. Cheng, Y., Yang, Q. D., Xiao, J., Xue, Q., Li, H. W., Guan, Z., ... & Tsang, S. W. (2015). Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS applied materials & interfaces, 7(36), 19986-19993.
25. Yang, J., Siempelkamp, B. D., Mosconi, E., De Angelis, F., & Kelly, T. L. (2015). Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chemistry of Materials, 27(12), 4229-4236.
26. http://cmnst.ncku.edu.tw/bin/home.php 成功大學微奈米中心儀器使用手冊
27. http://www.oxford-instruments.com/industries-and-applications/research/optical-spectroscopy/photoluminescence
28. http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter6_report.pdf
29. http://140.136.176.3/joom/data/menu/files/exp/contact.ppt