簡易檢索 / 詳目顯示

研究生: 邱柏勳
CIOU, BO-SYUN
論文名稱: 鈣鈦礦沉積在氧化鋅上的熱穩定性研究
Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO
指導教授: 黃榮俊
Huang, J. C. A.
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 70
中文關鍵詞: 氧化鋅鈣鈦礦穩定性
外文關鍵詞: ZnO, perovskite, instability
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於鈣鈦礦為直接能隙半導體材料、於可見光波段具優異的光吸收係數、載子擴散長度及雙極傳輸(ambipolar transport)等優異的光電特性,以鈣鈦礦作為吸收材料應用在太陽能電池上,其光電轉換效率已快速推升至22.1%。而於之前的研究中,鈣鈦礦太陽能電池主要以二氧化鈦作為電子傳輸層,然而二氧化鈦的電子遷移率太低,不易將電子快速截取有機會造成電子電洞復合,且需高溫燒結來製備。氧化鋅的電子遷移率較二氧化鈦高且與二氧化鈦能階相近,因此以氧化鋅取代二氧化鈦作為電子傳輸層,將可提升元件效率。因此我們以氧化鋅作為電子傳輸層應用在鈣鈦礦太陽能電池上,進一步發現在氧化鋅上面成長鈣鈦礦時,鈣鈦礦形成顏色跟鈣鈦礦成長在二氧化鈦上的不一樣,經過XRD分析後,發現形成的鈣鈦礦又分解回碘化鉛,說明氧化鋅易與鈣鈦礦產生化學反應,致使鈣鈦礦結構不穩定,為此我們探討氧化鋅退火溫度及其中的鋅氧比對鈣鈦礦形成的影響。實驗中發現鈣鈦礦的穩定性與氧化鋅的鋅含量有關,鋅的多寡會影響鈣鈦礦的穩定性,最後做了一個惡化實驗,發現鋅會跟碘化鉛反應形成碘化鋅和鉛,證實了鋅的含量多寡會影響鈣鈦礦的穩定性。

    In this research, we study the instability in perovskite (CH3NH3PbI3) thin films deposited on ZnO. We manufactured ZnO films by using ion beam sputter (IBS) system to sputter ZnO target with argon flux and deposited perovskite film on the top of ZnO by solvent engineering method. We analyzed the characteristics of as-formed perovskite on the ZnO substrate by GIXRD, SEM, AES, UV-VIS…etc. The analysis of XRD and UV-VIS show that the stability in perovskite has relation to the baking temperature of perovskite and the Zn/O2 ratio of the ZnO substrate. The results indicate that the instability of perovskite increases as the Zn content increases. Furthermore, we deposited perovskite film on pure Zn film for comparison. The GIXRD shows that the reaction takes place between Zn and PbI2 with a chemical reaction as follows:
    Zn+PbI2→ZnI2+Pb
    It prove that the stability of perovskite is dominated by the Zn content.

    中文摘要 I 英文延伸摘要 II SUMMARY II INTRODUCTION III EXPERIMENT AND METHODS IV RESULTS AND DISCUSSION V CONCLUSION IX 誌謝 X 總目錄 XI 表目錄 XV 圖目錄 XVI 第一章 序論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 相關理論與文獻回顧 5 2-1 太陽能電池原理與基本參數介紹 5 2-1-1 半導體的光吸收 5 2-1-2 光生伏特效應 (Photovoltaic effect) 6 2-1-3 太陽能電池的轉換效率與重要參數 8 2-2 鈣鈦礦 (CH3NH3PbI3, Perovskite)的特性 9 2-3 鈣鈦礦太陽能電池的基本構造與發展 11 2-4 以氧化鋅作為電子傳輸層的鈣鈦礦太陽能電池文獻回顧 15 2-5 鈣鈦礦的不穩定性的文獻回顧 17 第三章 實驗方法與分析儀器 18 3-1 實驗流程 18 3-2 製程設備 20 3-2-1 離子束濺鍍系統 (Ion beam sputter, IBS) 20 3-2-2 藥品儲存用手套箱與實驗用手套箱 24 3-2-3 旋轉塗佈機 (Spin coater) 25 3-2-4 高溫爐管 (High-temperature furnace tube) 25 3-3 實驗操作 26 3-3-1 氧化鋅薄膜的製備 26 3-3-2 鈣鈦礦成長在氧化鋅薄膜上 28 3-4 實驗量測儀器 29 3-4-1 X-ray繞射儀 (XRD) 29 3-4-2 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM)[26] 31 3-4-3 電性霍爾量測 32 3-4-4 歐傑電子能譜(AES) 34 3-4-5 紫外/可見光光譜 (Ultraviolet/visible spectroscopy) 35 3-4-6 接觸角量測 36 第四章 實驗結果與討論 37 4-1 厚度對氧化鋅物理特性影響之分析 37 4-1-1 SEM厚度分析 37 4-1-2 SEM正面圖分析氧化鋅成長在FTO上的覆蓋程度 39 4-1-3 UV-VIS分析 41 4-1-4 氧化鋅的電性量測 43 4-2 退火溫度對氧化鋅物性影響之特性分析 44 4-2-1 XRD結構分析 44 4-2-2 UV-VIS分析 45 4-2-3 AES分析 47 4-2-4 接觸角(Contact angle)分析 49 4-3 鈣鈦礦穩定性之分析 54 4-3-1 鈣鈦礦加熱溫度 54 4-3-2 氧化鋅退火溫度(非真空) 57 4-3-3 氧化鋅退火溫度(低真空) 61 4-3-4 惡化實驗 65 第五章 結論 67 參考文獻 68

    1. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
    2. http://www.nrel.gov/ncpv/images/efficiency_chart.jpgClaeys, C., & Simoen, E. (Eds.). (2011). Germanium-based technologies: from materials to devices. Elsevier.
    3. Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 13(9), 897-903.
    4. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
    5. Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093.
    6. Park, N. G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18(2), 65-72.
    7. F. Hao, C. C. Stoumpos, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2014, 136, 8094.
    8. Bai, S., Wu, Z., Wu, X., Jin, Y., Zhao, N., Chen, Z., ... & Liu, R. (2014). High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Research,7(12), 1749-1758.
    9. J.-H. Im, H.-S. Kim, N.-G. Park, APL Mater. 2014, 2, 081510.
    10. Im, J. H., Jang, I. H., Pellet, N., Grätzel, M., & Park, N. G. (2014). Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature nanotechnology, 9(11), 927-932.
    11. Cui, X. P., Jiang, K. J., Huang, J. H., Zhou, X. Q., Su, M. J., Li, S. G., ... & Song, Y. L. (2015). Electrodeposition of PbO and its in situ conversion to CH 3 NH 3 PbI 3 for mesoscopic perovskite solar cells. Chemical Communications,51(8), 1457-1460.
    12. Christians, J. A., Fung, R. C., & Kamat, P. V. (2013). An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society,136(2), 758-764.
    13. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2012, 2, 591.
    14. H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel, N.-G. Park,Nano Lett. 2013, 13, 2412.
    15. J. Burschka, N. Pellet, S.-J. Moon,Nature 2013, 499, 316.
    16. D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, RSC Adv.2013, 3, 18762.
    17. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat. Nanotechnol. 2014, DOI:10.1038/NNANO.2014.181.
    18. D.-Y. Son, J.-H. Im, H.-S. Kim, N.-G. Park, J. Phys. Chem. C 2014, 118,16567.
    19. K.-C. Wang, J.-Y. Jeng, P.-S. Shen,Y.-C. Chang, E. W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, T.-C. Wen,Sci. Rep. 2014, 4, 4756.
    20. Zuo, C., & Ding, L. (2015). Solution‐Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small, 11(41), 5528-5532.
    21. Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques.Nature photonics, 8(2), 133-138.
    22. Liang, L., Huang, Z., Cai, L., Chen, W., Wang, B., Chen, K., ... & Fan, B. (2014). Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells. ACS applied materials & interfaces, 6(23), 20585-20589.
    23. Tseng, Z. L., Chiang, C. H., & Wu, C. G. (2015). Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells. Scientific reports,5.
    24. Cheng, Y., Yang, Q. D., Xiao, J., Xue, Q., Li, H. W., Guan, Z., ... & Tsang, S. W. (2015). Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS applied materials & interfaces, 7(36), 19986-19993.
    25. Yang, J., Siempelkamp, B. D., Mosconi, E., De Angelis, F., & Kelly, T. L. (2015). Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chemistry of Materials, 27(12), 4229-4236.
    26. http://cmnst.ncku.edu.tw/bin/home.php 成功大學微奈米中心儀器使用手冊
    27. http://www.oxford-instruments.com/industries-and-applications/research/optical-spectroscopy/photoluminescence
    28. http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter6_report.pdf
    29. http://140.136.176.3/joom/data/menu/files/exp/contact.ppt

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE