簡易檢索 / 詳目顯示

研究生: 梁信偉
Liang, Xin-Wei
論文名稱: 五苯薄膜表面形態和薄膜多形態之研究
Studies of surface morphology and thin-film polymorphs in pentacene film
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 掃瞄微拉曼光譜分子振動晶粒束縛電荷磁場有機薄膜電晶體五苯環缺陷
外文關鍵詞: Raman mapping, magnetic field, traps, organic thin film transistors, pentacene, grain, fixed charges
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究五苯 (pentacene) 有機半導體為主動層之薄膜電晶體元件特性。研究分成兩部份,第一部份,將元件置於外加磁場下操作,探討主動層與介電層交界面中,束縛電荷與缺陷對有機薄膜電晶體 (OTFTs) 的影響;第二部份,探討五苯分子振動特性與五苯複晶薄膜的表面形態的關連性。
    第一部分:將五苯OTFTs元件置於磁場的環境下操作,使載子產生的偏折,探討載子受到有機半導體薄膜與介電層界面中的束縛電荷與缺陷的影響。結果指出,外加磁場會明顯影響五苯元件的輸出電流、場效遷移率、與起始電壓。外加向上磁力可使載子電洞漂移遠離五苯/介電層界面與脫離束縛態,導致較大的電流輸出與起始電壓往正向位移,因此影響到載子遷移率。磁場導致的元件電性變化與閘極誘導應力和光誘導應力導致的電性改變明顯不同,我們建議這些來自無預期的雜質摻雜的額外載子,於有機薄膜電晶體的電特性可能扮演一重要角色。
    第二部份: 利用原子力顯微鏡與拉曼一維與二維掃瞄技術研究五苯複晶薄膜的表面晶粒形能與微觀分子振動特性的相關性。我們使用微拉曼光譜學去研究複晶薄膜內的分子微結構,探討C-H 共平面彎折模式與C-C 苯環內伸縮模式於1100-1400 cm-1能量區間。吾人可利用光譜的強度定義出晶粒與晶界的相關位置,結果指出五苯薄膜上的晶粒中心擁有較佳的排列秩序,且由中心向晶界遞減,而晶界上排列的秩序較差且不連續。我們建議晶粒的大小可能不是決定電性好壞的主要因素,主要因素應該是晶粒與晶界上分子的排列秩序與整體分子間偶合的能量大小。

    In this study, device characteristics of polycrystalline pentacene-based organic thin-film transistors (OTFTs) were investigated. In part 1, we studied the traps and fixed charges at the interface between gate dielectric and pentacene by using an external magnetic field during device operations. In the second part, we studied the correlation between surface morphology and molecular vibrational characterizations of polycrystalline pentacene thin-films.
    Part 1: External magnetic field effects in pentacene-based organic thin-film transistors (OTFTs) during device operations were studied. Herein, we showed that the output drain current (IDS), field-effect mobility, and threshold voltage (Vth) of pentacene devices were affected by the presence of a magnetic field. The upward magnetic force made the holes drift away from the pentacene/dielectric interface and/or detrapping from the immobile states, contributing to a larger IDS and a positive shift in Vth and thus, carrier mobility. The magnetic field-induced variations in electrical characteristics of pentacene-based OTFTs were different from that of gate-induced and light-induced bias-stress effects, suggesting that extra carriers from unintentional doping may play an important role in organic TFTs’ electrical characteristics.
    Part 2: We studied the molecular vibrational characterizations of pentacene molecules in polycrystalline films with grain morphology using atomic force microscopy and Raman mapping measurements. We applied the micro-Raman spectroscopy to identify the molecular microstructures within the polycrystalline pentacene films, including C-H in-plane bending and C-C aromatic stretching modes in the energy range of 1140-1200 and 1300-1400 cm-1, respectively. We observed that the grain had stronger Raman intensities for all bands in the grain boundaries. At the same time, the relative intensity of 1155 (v1) and 1158 (v0) cm-1 bands was higher in those associated with a larger v0-v1 splitting in the grains than those in the grain boundaries. For polycrystalline films, the microstructures were more ordered (crystalline) in the grain and more disordered (amorphous) in the grain boundary. Consequently, we deduced that the relative intensity of v1 band and the v0-v1 splitting was proportional to the fraction of the ordered area or density of the well-defined crystal unit cell.

    中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 V 目次 VI 表目錄 VIII 圖目錄 IX 第一部份 外部磁場對五苯環薄膜電晶體之影響 1 1. 簡介 2 2. 實驗 4 2.1 有機材料 4 2.2 實驗相關儀器 4 2.3 樣品製作 5 2.4 OTFTs的操作與電性量測 5 2.5 OTFTs 磁滯效應的量測 6 3. 結果與討論 8 3.1 OTFTs的磁滯現象 8 3.2 OTFTs在磁場中的電性變化 8 4. 結論 11 5. 未來研究方向 12 6. 參考文獻 13 第二部份 五苯薄膜表面形態之研究 20 1. 簡介 21 2. 理論背景 25 2.1 五苯環的微拉曼光譜 25 2.2 Davydov splitting原理 26 3. 實驗 28 3.1 有機材料 28 3.2 實驗相關儀器 28 3.3 樣品製作 29 3.3.1 製作不同修飾層的OTFTs元件 30 3.3.2 製作不同五苯環厚度的樣本 31 3.3.3 製作不同晶粒大小的五苯環薄膜樣本 31 3.3.4 五苯環成長在粗糙的PMMA996k修飾層 31 4. 結果與討論 32 4.1 製作不同修飾層的OTFTs元件電性與微拉曼光譜的關係 33 4.2 晶粒與晶界的相關位置 35 4.3 拉曼掃瞄對晶粒大小的解析度 37 4.4 晶粒與晶界的分子排列 39 4.5 微拉曼掃瞄技術應用在PMMA的薄膜上 41 5. 結論 42 6. 未來研究方向 44 7. 參考文獻 45

    第一部份
    1 V. C. Sundar, J. Zaumseil, V. Podzorov et al., "Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals," Science 303, 1644-1646 (2004).

    2 H. Klauk, M. Halik, U. Zschieschang et al., "Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates," Applied Physics Letters 82 (23), 4175-4177 (2003).

    3 A. Bolognesi, M. Berliocchi, M. Manenti et al., "Effects of grain boundaries, field-dependent mobility, and interface trap states on the electrical characteristics of pentacene TFT," IEEE Transactions on Electron Devices 51 (12), 1997-2003 (2004).

    4 施敏, 半導體元件物理與製作技術. (交大出版社, 新竹市, 2002).

    5 R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits. (Wiley, New York, 1986).

    6 H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. (Wiley, New York, 1982).

    7 M. Kiguchi, M. Nakayama, K. Fujiwara et al., "Accumulation and Depletion Layer Thicknesses in Organic Field Effect Transistors " Jpn. J. Appl. Phys 42, L1408-L1410 (2003).

    8 A. Dodabalapur, L. Torsi, and H. E. Katz, "Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics," Science 268, 270-271 (1995).

    9 I.P.M. Bouchoms, W.A. Schoonveld, J. Vrijmoeth et al., "Morphology identification of the thin film phases of vacuum evaporated pentacene on SIO substrates," Synthetic Metals 104, 175-178 (1999).

    第二部份
    1 Y. Y. Lin, D. J. Gundlach, S. F. Nelson et al., "Stacked pentacene layer organic thin-film transistors with improved characteristics," IEEE Electron Device Letters 18 (12), 606-608 (1997);
    C.D. Dimitrakopoulos and P.R.L. Malenfant, "Organic Thin Film Transistors for Large Area Electronics," Advanced Materials 14, 99-117 (2002).

    2 M. Shtein, J. Mapel, J. B. Benziger et al., "Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors," Applied Physics Letters 81 (2), 268-270 (2002);
    M. H. Choo, J. H. Kim, and S. Im, "Hole transport in amorphous-crystalline-mixed and amorphous pentacene thin-film transistors," Applied Physics Letters 81 (24), 4640-4642 (2002);
    D. Knipp, R. A. Street, A. Volkel et al., "Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport," Journal of Applied Physics 93 (1), 347-355 (2003);
    H. Klauk, M. Halik, U. Zschieschang et al., "High-mobility polymer gate dielectric pentacene thin film transistors," Journal of Applied Physics 92 (9), 5259-5263 (2002);
    S. Lee, B. Koo, J. Shin et al., "Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance," Applied Physics Letters 88 (16) 162109 (2006);
    F. De Angelis, S. Cipolloni, L. Mariucci et al., "High-field-effect-mobility pentacene thin-film transistors with polymethylmetacrylate buffer layer," Applied Physics Letters 86 (20) 23505 (2005).

    3 W. Y. Chou, C. W. Kuo, H. L. Cheng et al., "Effect of surface free energy in gate dielectric in pentacene thin-film transistors," Applied Physics Letters 89 (11) 112126 (2006).

    4 W. Y. Chou and H. L. Cheng, "An orientation-controlled pentacene film aligned by photoaligned polyimide for organic thin-film transistor applications," Advanced Functional Materials 14 (8), 811-815 (2004).

    5 J. Levinson, F. R. Shepherd, P. J. Scanlon et al., "Conductivity behavior in polycrystalline semiconductor thin film transistors," Journal of Applied Physics 53 (2), 1193-1202 (1982);
    R. A. Street, D. Knipp, and A. R. Volkel, "Hole transport in polycrystalline pentacene transistors," Applied Physics Letters 80 (9), 1658-1660 (2002);
    G. Horowitz, "Tunneling current in polycrystalline organic thin-film transistors," Advanced Functional Materials 13 (1), 53-60 (2003);
    Y. W. Wang, H. L. Cheng, Y. K. Wang et al., "Influence of measuring environment on the electrical characteristics of pentacene-based thin film transistors," Thin Solid Films 467 (1-2), 215-219 (2004).

    6 F.-J. Meyer zu Heringdorf, M. C. Reuter, and R. M. Tromp, "Growth dynamics of pentacene thin films," Nature 412 (6846), 517-520 (2001);
    A. D. Carlo, F. Piacenza, A. Bolognesi et al., "Influence of grain sizes on the mobility of organic thin-film transistors," Applied Physics Letters 86 (26) 263501 (2005).

    7 R. G. D. Valle, A. Brillante, E. Venuti et al., "Exploring the polymorphism of crystalline pentacene," Organic Electronics 5 (1-3), 1-6 (2004);
    C. C. Mattheus, G. A. de Wijs, R. A. de Groot et al., "Modeling the polymorphism of pentacene," Journal of the American Chemical Society 125 (20), 6323-6330 (2003);
    S. E. Fritz, S. M. Martin, C. D. Frisbie et al., "Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction," Journal of the American Chemical Society 126 (13), 4084-4085 (2004).

    8 L. F. Drummy and D. C. Martin, "Thickness-Driven Orthorhombic to Triclinic Phase Transformation in Pentacene Thin Films," Advanced Materials 17 (7), 903-907 (2005).

    9 A. Brillante, I. Bilotti, R. G. D. Valle et al., "Characterization of phase purity in organic semiconductors by lattice-phonon confocal Raman mapping: Application to pentacene," Advanced Materials 17 (21), 2549-2559 (2005).

    10 J. Cornil, J. Ph. Calbert, and J. L. Brédas, "Electronic Structure of the Pentacene Single Crystal: Relation to Transport Properties," Journal of the American Chemical Society 123 (6), 1250-1251 (2001);
    N. E. Gruhn, D. A. da Silva Filho, T. G. Bill et al., "The Vibrational Reorganization Energy in Pentacene: Molecular Influences on Charge Transport " Journal of the American Chemical Society 124 (27), 7918 -7919 (2002).

    11 施敏, 半導體元件物理與製作技術. (交大出版社, 新竹市, 2002).

    12 A. P. Scott and L. Radom, "Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Mller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors " Journal of Physical Chemistry 100 (41), 16502 -16513 (1996).

    13 T. Jentzsch, H. J. Juepner, K. W. Brzezinka et al., "Efficiency of optical second harmonic generation from pentacene films
    of different morphology and structure," Thin Solid Films 315, 273-280 (1998).

    14 R. He, I. Dujovne, L. Chen et al., "Resonant Raman scattering in nanoscale pentacene films," Applied Physics Letters 84 (6), 987-989 (2004).

    15 M. Cazayous, A. Sacuto, G. Horowitz et al., "Iodine insertion in pentacene thin films investigated by infrared and Raman spectroscopy," Physical Review B 70, 81309-81313 (2004).

    16 D. Faltermeier, B. Gompf, Martin. Dressel et al., "Optical properties of pentacene thin films and single crystals," Physical Review B 74, 125416-125421 (2006).

    17 F. Daniel, G. Bruno, D. Martin et al., "Optical properties of pentacene thin films and single crystals," Physical Review B 74, 125416-125421 (2006).

    18 A. S. Davydov, Theory of molecular excitons (McGraw-Hill, New York, 1962).

    19 W. Y. Chou, Y. S. Mai, H. L. Cheng et al., "Correlation of growth of pentacene films at various gas ambience conditions to organic field-effect transistor characteristics " Organic Electronics 7 (6), 445-451 (2006);
    H. L. Cheng, Y. S. Mai, W. Y. Chou et al., "Influence of molecular structure and microstructure on device performance of polycrystalline pentacene thin-film transistors," Applied Physics Letters 90, 171926-171928 (2007);
    H. L. Cheng, W. Y. Chou, C. W. Kuo et al., "Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy," Applied Physics Letters 88, 161918-161920 (2006).

    下載圖示 校內:2008-08-03公開
    校外:2008-08-03公開
    QR CODE