簡易檢索 / 詳目顯示

研究生: 翁于晴
Weng, Yu-Ching
論文名稱: 乙醇氧化與氧氣還原之電觸媒行為與其在感測器上之應用
Electrocatalysts for Ethanol Oxidation and Oxygen Reduction and Their Applications in Sensors
指導教授: 周澤川
Chou, Tse-Chuan
Allen J. Bard
Allen J. Bard
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 197
中文關鍵詞: 銅聚組織氨酸氧氣還原乙醇感測器乙醇氧化鎳硼電極濺鍍奈米鎳電極alpha態氫氧化鎳氧化釕修飾鎳
外文關鍵詞: Ethanol sensors, Oxygen reduction., Ethanol oxidation, Cu2+-poly-L-hisitidine, Amperometry, Electrodeposited Ni-B/Pt/Ti on Al2O3, Sputtered Ni/Pt/Ti on Al2O3, α-Ni(OH)2/Pt/Ti, RuO2-modified Ni
相關次數: 點閱:117下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文之內容可分成陽極觸媒和陰極觸媒兩個部分。由於乙醇不易在水溶液中進行氧化反應,因此許多觸媒材料被開發以降低其反應的過電位;而氧氣在生物體的新陳代謝中扮演一個重要的角色,它可被酵素還原成過氧化氫。故本研究的陽極觸媒主要探討修飾鎳電極催化乙醇氧化之電化學行為與其在感測器上的應用;陰極觸媒主要探討仿效素觸媒催化氧氣還原的電化學行為。以此搭配藉以了解有機與無機物質在無機與有機電極觸媒之氧化還原的行為。在陽極觸媒方面,本研究除了製備傳統大電極包括:氧化釕修飾鎳電極、電鍍alpha和beta態氫氧化鎳電極。也利用微製造技術製備微小電極包括:濺鍍奈米鎳電極、電鍍鎳硼電極。分別討論這些電極觸媒催化乙醇氧化行為與特性。並評估其對乙醇感測之靈敏度、反應時間、選擇性、穩定性。陰極部分乃在設計一個仿氧化酵素Laccase之觸媒,用以催化氧氣還原。以銅聚組織氨酸錯合物作為仿效素,探討此錯合物在水溶液中與其修飾在玻璃碳電極表面上的電化學行為。並將銅聚組織氨酸錯合物製備成微小陣列,改變不同銅對聚組織氨酸的莫耳組成,以掃瞄式電子顯微鏡(SECM)快速檢測其對氧氣還原的催化效果。

    一、陽極觸媒
      乙醇的定量廣泛的應用在醫學上、釀造業、化妝品業或是酒醉駕駛的防治。雖然傳統的液相層析儀或質譜儀可以精確量測乙醇含量,但這些儀器操作複雜、不易攜帶。本研究欲以修飾鎳觸媒催化乙醇氧化的觀點來設計一個攜帶方便、材料便宜、靈敏度高、反應時間快的乙醇感測器,並對不同的修飾鎳電極進行分析和評估。
    氧化釕修飾鎳電極是以熱裂解的方式製備。經過修飾的鎳電極在水溶液的氧化電位較純鎳電極高,背景電流也比較大。注入乙醇後,氧化釕修飾鎳電極催化乙醇氧化的淨電流較純鎳電極高兩倍,顯示氧化釕修飾鎳電極能有效催化乙醇氧化反應。製備氧化釕修飾鎳電極的最佳條件為:氧化釕濃度2 M,重複浸泡氧化釕熱裂解次數6次,施加超音波功率150瓦。此條件下電極表面有最小的氧化釕顆粒(粒徑為120 nm),而釕和鎳之表面原子比為17。最佳條件所測得的靈敏度為4.92 µAppm-1cm-2,應答時間13秒,而乙醇濃度線性範圍在100與1000 ppm之間。
      alpha態氫氧化鎳電極以定電流的方式製備,其電鍍時間和鍍液中硝酸鎳濃度的變化皆會影響膜表面的型態及特性,進而影響對乙醇的催化效果。將alpha態氫氧化鎳電極浸泡在高溫高濃度的氫氧化鉀溶液中,氫氧化鎳會從alpha態變成beta態。alpha態氫氧化鎳催化乙醇氧化的淨電流量較beta態氫氧化鎳高,但本文所製備的alpha態氫氧化鎳可逆性卻比bata態氫氧化鎳差。由BET測得以電鍍法製備出的氫氧化鎳膜具有多孔性,當alpha態氫氧化鎳超過一定的厚度時,會造成乙醇穿透氫氧化膜的阻力過大,會對乙醇完全無催化效果。alpha態氫氧化鎳電極對乙醇催化最佳的製備條件為:電流密度1 mAcm-2,硫酸鎳濃度:1 M,電鍍時間:15分鐘。此條件下,alpha態氫氧化鎳膜之厚度約為0.96 micro meter。
      以微製造技術搭配濺鍍法所製備的奈米鎳電極具有高的比表面積,其對乙醇的催化效果較一般鎳電極佳。由AFM和SEM可觀測奈米鎳粒子的粒徑分佈在10到30 nm間。當濺鍍奈米鎳電極的厚度達到900 nm時,電極表面可感測乙醇的活性基已達飽和狀態,與態氫氧化鎳薄膜有異曲同工之妙。奈米鎳電極對乙醇感測最佳的製備條件為:濺鍍時間45分鐘,濺鍍功率50瓦。此條件下測得的靈敏度為2.56 µAppm-1cm-2,而應答時間27秒,乙醇濃度線性範圍在100與600 ppm之間。此奈米鎳電極對乙醇溶液相較於乳酸、抗壞血酸、檸檬酸、蘋果酸、乙酸溶液,有極高的選擇性。但在含有醇基的環境下,其選擇性依序是甲醇>乙醇>丙醇>丁醇。
      鎳硼電極是以微製造技術搭配電鍍法所製備,所得到的活化膜具有高度結晶性。微小化的鎳硼電極比大電極對乙醇有較佳的催化效果。循環伏安圖顯示微小化鎳硼電極在乙醇加入後出現了另一個氧化峰,推測是三價鎳離子與乙醇反應速度和三價鎳離子還原成二價鎳離子速度不同導致。此電極感測乙醇的最佳製備條件為:電鍍溫度為80度,電鍍時間20分鐘。在此條件下所測得的靈敏度為6.1 µAppm-1cm-2,應答時間9秒,乙醇濃度線性範圍在100與600 ppm之間。當以酸類為干擾物測試時,鎳硼電極在對乙醇溶液有極高的選擇性。
    綜合以上以鎳為主的陽極觸媒,相較於文獻上189-192催化乙醇氧化的觸媒材料可發現,鎳或修飾鎳觸媒有很高的靈敏度和很短的應答時間,但對於同類醇基的辨識率差。此外,由於氫氧化鎳( Ni(OH)2 )和過氧化鎳( NiOOH )有兩種型態存在,之間的轉換造成電極長期穩定性不佳,硼的加入可些微抑制靈敏度震盪的幅度。

    二、陰極觸媒
      氧氣還原反應廣泛的應用在燃料電池的陰極、染色處理、氧氣感測器等。鉑是目前最常用來催化氧氣還原的觸媒。然而,他的缺點包括容易被污染、價格昂貴。本研究欲以一個簡單的方式合成仿氧化酵素之觸媒來催化氧氣還原。利用聚組織氨酸為基質加入銅金屬離子形成錯合物來仿造Laccase的活性中心,分別在傳統三極式電化學反應器和掃瞄式電化學系統中作測試。在大電極的系統中可發現銅聚組織氨酸錯合物修飾玻璃碳電極相較於未修飾的玻璃碳電極,可降低氧氣還原的過電位並增進催化氧氣還原的電流。在掃瞄式電化學系統中,先以微噴射針筒製備不同比例組成的銅聚組織氨酸陣列當作基材,以直徑為25 micro meter的鉑微電極作為探針,利用「探針產生基材收集」的模式(tip generation substrate collection),在探針上產生氧氣,氧氣擴散到基材上還原的方式,快速檢測出具有最佳催化特性之觸媒組成。結果顯示催化氧氣還原的效果與銅離子對聚組織氨酸的莫耳百分比息息相關,銅離子對聚組織氨酸的莫耳濃度比在0.17時有最佳的催化氧氣還原的效果。

      Ethanol quantification is important in medicine, brewing, fermentation and the control of drunken driving. Ethanol assays are also necessary for the quality control of ethanol based products in industry. Although liquid chromatograph and mass spectroscopy can determine with great precision ethanol concentrations, they are not suitable for ethanol analyses outside of the laboratory, due to the delicate and complicated instrumentation involved and the requirement for higher level operational skills. Therefore, we aimed to develop a convenient and simple ethanol sensor, with high a sensing performance, based on electrocatalytic technology using: RuO2-modified Ni; α-Ni(OH)2/Pt/Ti; sputtered Ni/Pt/Ti on an Al2O3 substrate; and electrodeposited Ni-B/Pt/Ti on Al2O3, as our electrodes.
      The RuO2-modified Ni electrode was prepared by the thermal decomposition method. The anodic peak shifted to more anodic potentials when the background current was higher compared to a bare Ni electrode. Additionally, ethanol oxidation was more efficient with a RuO2-Ni electrode than with a bare nickel electrode. The sensing results were affected by the RuCl3 concentration, thermal decomposition numbers and ultrasonic irradiation used for preparing the working electrode. The optimal operating conditions for the RuO2-modified Ni electrode were 2 M Ru3+, 6 cycles of repeated thermal decomposition and 150 watts of ultrasonic irradiation. Under optimal sensing conditions, the best sensitivity and response times were 4.92 µAppm-1cm-2 and 13 s (90% response time), respectively.
      Since the oxidation state of α-Ni(OH)2 is higher than beta- Ni(OH)2, we were interested in the factors influencing ethanol oxidation on the α-Ni(OH)2/Pt/Ti electrode. The α-Ni(OH)2 layer was formed on Pt in a nickel nitrate solution by cathodic deposition. Both electrode deposition time and the nickel nitrate concentration used for preparing the working electrode were found to affect the response current generated by ethanol oxidation. The results showed that the oxidation of ethanol significantly depended on the thickness and porosity of α-Ni(OH)2. A α-Ni(OH)2 film with a thickness of 0.96 μm was able to oxidize ethanol effectively. However, when the thickness of the α-Ni(OH)2 film was larger than 5.09 μm, there was no response current indicative of anodic oxidation. The optimal operating conditions for preparing a desired thickness of the α-Ni(OH)2/Pt/Ti electrode were 15 min at 1 mAcm-2 current density and 1 M Ni2+.
      The film formed as a sputtered Ni/Pt/Ti layer on an Al2O3 substrate by a combination of micro-fabrication and sputtering techniques possess a high surface area. The particle size distribution is in the range from 10 to 30 nm as determined by both atomic force microscopy (AFM) and scanning electron microscopy (SEM). These results show the active site of NiOOH, which oxidizes ethanol reaches a saturation point while the thickness of sputtered Ni (900 nm) is in accordance with the α-Ni(OH)2/Pt/Ti electrode. Ethanol oxidation was more efficient on sputtered Ni/Pt/Ti formed on an Al2O3 substrate electrode than on a conventional nickel electrode. The optimal operating conditions used to generate the sputtered Ni/Pt/Ti on the Al2O3 substrate electrode were 45 min of Ni sputtering deposition time and 50 watts of Ni sputtering power. The response time of the prepared ethanol sensor is 27 s and the best sensitivity is 2.56 µAppm-1cm-2.
      The electrodeposited Ni-B/Pt/Ti on Al2O3 substrate electrode was constructed using a thin-film technique. The sensing layers of Ni-B films prepared at constant cathodic current density have good crystallinity. The amperometric response of this miniaturized electrode was higher than that of traditional bulky electrodes. The micro-fabricated electrodeposited nickel-boron electrode exhibits good electrochemical performance in terms of response time (t(90%) = 9 s), linearity (100-600 ppm, r2 = 0.998), and sensitivity (6.1 µAppm-1cm-2). This sensor also shows a high selectivity to ethanol over mailc, citric, ascorbic, and acetic acids. The optimal operating conditions of these ethanol sensors were 80oC of electrodeposition temperature and 20 min of electrodeposition time.
      The nickel based electrodes have high sensitivities and short response times compared to other electrocatalysts in cited in the literature186-192. The higher sensitivity of the RuO2 modified Ni and the electrodeposited Ni-B electrodes compared to the sputtered Ni electrode indicates that binary combinations of the electrocatalysts are superior to one component electrocatalysts. However, these electrodes have poor selectivity toward ethanol in the presence of other alcohols. They are also unstable, which precludes their use for long term measurements, due to the phase transformations between alpha and beta types although boron could slightly decrease the undulate sensitivity.
    In the second part of this work a simple approach for the preparation and characterization of biomaterial-based electrocatalysts for oxygen reduction was carried out. Poly-L-histidine was used as a matrix and complexed by ligands with Cu2+ to mimic the active sites of laccases. A modified glassy carbon (GC) electrode with the Cu2+-poly-L-hisitidine complex was able to decrease the oxygen reduction overpotential as compared with a bare GC electrode. An array of Cu2+-poly-L-histidine spots with different compositions was deposited on a GC substrate and their catalytic activity with respect to oxygen reduction was evaluated by a SECM-based screening technique. The electrocatalytic activities of complexes for oxygen reduction depended strongly on the molar ratio of Cu2+ to poly-L-hisitidine and the applied potential of the substrate. The best composition of Cu2+-poly-L-hisitidine complex for oxygen reduction is at a molar ratio of 0.17 for Cu2+ to histidine residues.

    Table of the Contents Forward I English abstract II Chinese abstract V Acknowledgements IX Table of contents X List of Figures XV List of Tables XXIII Frequent Abbreviations XXIV Major Symbols XXV Chapter 1 Introduction 1 1.1 Electrocatalysts 1 1.1.1 Electrochemical systems 1 1.1.2 Function of electrocatalysis 2 1.1.3 Electrocatalysts 3 1.2 Nickel as an electrocatalyst for alcohol oxidation 5 1.2.1 The structures of nickel oxide 5 1.2.2 The correlation between various phases of nickel oxide 8 1.2.3 Electrocatalytic oxidation of alcohol on nickel-based electrode 10 1.3 Other electrocatalysts for alcohol oxidation 12 1.3.1 Platinum based electrocatalysts 12 1.3.2 Ruthenium oxide and iridium oxide 14 1.3.3 Boron doped diamond based electrocatalysts 14 1.3.4 Other materials 15 1.4 Electrocatalysts for oxygen reduction reaction 15 1.4.1 Laccase and its reduction potential for oxygen reduction reaction 18 1.4.2 Cu2+-L-histidine complex 20 1.4.3 Cu2+-poly-L-histidine complex 25 1.5 Sensors 28 1.5.1 Historical development 28 1.5.2 Sensor definition and characteristics 28 1.5.3 Classification of chemical sensors 31 1.6 Ethanol sensors 40 1.6.1 Ethanol determination 40 1.6.2 Review of ethanol sensors 41 1.6.3 Microfabrication technology 48 1.7 Motivation of this study 52 Chapter 2 Principal 55 2.1 Scanning Electrochemical Microscopy 55 2.1.1 Ultramicroelectrodes as SECM probes 55 2.1.2 SECM mode of operation 56 2.1.3 Applications of SECM 58 2.2 The mechanism of electrodeposition of α-Ni(OH)2 60 2.3 Sputter deposition 61 Chapter 3. Experimental 62 3.1 Chemicals, materials, and instruments 62 3.2 Sensing electrodes preparation for ethanol oxidation 65 3.2.1 RuO2-modified Ni electrode 65 3.2.2 α-Ni(OH)2/Pt/Ti on titanium electrode 65 3.2.3 Nanostructured Ni/Pt/Ti on Al2O3 electrode 66 3.2.4 Electrodeposited Ni-B on Al2O3 electrode 68 3.3 Sensing electrodes preparation for oxidation reduction 68 3.3.1 Cu2+-poly-l-histidine modified glassy carbon electrodes 68 3.3.2 Tip electrode for SECM screening 69 3.3.3 Catalyst Spots on GC Substrate for SECM screening 69 3.4 Electrodes characterization and electrochemistry systems for ethanol oxidation 70 3.4.1 Electrodes characterization 70 3.4.2 Electrochemical measurements 72 3.4.3 Sensing procedure 72 3.5 Electrochemistry systems for oxidation reduction 73 3.5.1 Traditional three electrode analytical system 73 3.5.2 SECM analytical system 73 3.6 Instrumental analysis 75 3.6.1 X-ray diffratometer (XRD) 75 3.6.2 X-ray photoelectron spectroscopy (XPS) 76 3.6.3 Scanning electron microscopy (SEM) 76 3.6.4 Atomic force microscope (AFM) 76 Chapter 4. Nickel-based electrodes for the determination of ethanol 78 4.1 RuO2-modified Ni as working electrode 78 4.1.1 Structural characterization of the RuO2-modeified Ni electrode 78 4.1.2 The voltammetric behavior of the RuO2-modeified Ni electrode 78 4.1.2.1 Comparison of electrochemical properties for bare Ni and RuO2-Ni electrodes 78 4.1.2.2 Oxidation of ethanol at RuO2-modified Ni electrodes 81 4.1.3 Chronoamperometry 83 4.1.4 Optimal electrode composition and preparing conditions on the ethanol sensing 83 4.1.4.1 Effect of RuCl3 concentration 83 4.1.4.2 Effect of thermal decomposition numbers 87 4.1.4.3 Effect of ultrasonic irradiation 89 4.1.5 The stability of ethanol sensor 92 4.2 Effects of α-Ni(OH)2/Pt/Ti electrodes for ethanol anodic oxidation 94 4.2.1 Structural characterization of α-Ni(OH)2/Pt/Ti Electrode 94 4.2.2 Ethanol oxidation on α-Ni(OH)2/Pt/Ti and β-Ni(OH)2/Pt/Ti Electrodes 96 4.2.3 Optimal α-Ni(OH)2/Pt/Ti Electrode Conditions for Ethanol Oxidation 99 4.2.3.1 Effect of Electrode Deposition Time 99 4.2.3.2 Effect of Ni(NO3)2 Concentration 103 4.2.4 The interactive mechanism between the ethanol and α-Ni(OH)2 electrode surface 107 4.3 Sputtered Ni/Pt/Ti on Al2O3 substrate as working electrode 109 4.3.1 Film morphology imaged by atomic force microscopy 110 4.3.2 Comparison of electrochemical properties of Ni and sputtered Ni/Pt/Ti on Al2O3 substrate electrodes 110 4.3.3 Determination of potential window 113 4.3.4 Chronoamperometry 113 4.3.5 Effect of preparing conditions on ethanol sensing 116 4.3.5.1 Effect of electrode sputtering deposition time 116 4.3.5.2 Effect of electrode sputtering power 119 4.3.6 Interference studies 119 4.3.7 Reproducibility test 122 4.4 Electrodeposited Ni-B/Pt/Ti on Al2O3 substrate as working electrode 125 4.4.1 Characteristics of the electrodeposited Ni-B/Pt/Ti on Al2O3 substrate electrodes 125 4.4.2 Comparison of electrochemical behaviors of traditional bulky and miniaturized electrodes 127 4.4.3 Determination of potential window 131 4.4.4 Chronoamperometry 131 4.4.5 Effect of preparing conditions on ethanol sensing 133 4.4.5.1 Effect of electrodeposition temperature 133 4.4.5.2 Effect of electrodeposition time 137 4.4.6 Interference studies 138 4.4.7 Reproducibility test 138 Chapter 5. Biomimietic copper poly-L-histidine complexes for oxygen reduction 143 5.1 Ultraviolet-visible spectroscopic measurements 143 5.2 Cyclic votalmmetric behavior of Cu2+ in the aqueous solution in the absence and in the present of O2 at GC electrodes 143 5.3 Cyclic votalmmograms of Cu2+-L-histidine complexes in the aqueous solution in the absence and in the present of O2 at GC electrodes 146 5.4 Cyclic votalmmograms of Cu2+-poly-L-histidine complexes in the aqueous solution in the absence and in the present of O2 at GC electrodes 149 5.5 Electrocatalytic reduction of O2 at the Cu2+-poly-L-histidine complexes modified GC electrodes in PBS solution 156 5.6 Screening of Cu2+-poly-L-histidine complexes for oxygen reduction by SECM 160 Chapter 6. General discussion, conclusions and suggestions 169 6.1 General discussions 169 6.2 Conclusions 174 References 177

    1. Bard, A. J.; Faulkner, L. R.; Eds.; Electrochemical Methods–Fundamentals and Applications, John Wiley & Sons: New York, 1980; 2nd ed., 2000.
    2. Kyriacou, D. K., Basics of electroorganic synthesis, Wiley, New York, 1981.
    3. Bertram, J., Coleman, J. P., Fleischmann, M., Pletcher, D. “The electrochemical behaviour of alkanes in fluorosulphonic acid” J. Chem. Soc., Perkin Trans. 2, 1973, 4, 374-380.
    4. Brett, C. M. A., Brett, A. M. O., Electrochemistry :principles, methods, and applications, Oxford University Press, New York, 1993.
    5. Pletcher, D. “Electrocatalysis: present and future,” J. Appl. Electrochem. 1984, 14, 403-415.
    6. Couper, A. M., Pletcher, D., Walsh, F. C., “Electrode materials for electrosynthesis” Chemical Reviews Table of Contents 1990, 90, 837-865.
    7. Trasatti, S. “Physical electrochemistry of ceramic oxides,” Electrochim. Acta 1991, 36, 225-241.
    8. Wendt, H., “Electrocatalysis in organic electrochemistry,” Electrochim. Acta 1984, 29, 1513-1525.
    9. Lipkowski, J., Ross, P. N. The Electrochemistry of novel materials, VCH, New York, 1994, chapter 5.
    10. Morita, M., Niwa, O., Tou, S., Watanabe, N. “Nickel content dependence of electrochemical behavior of carbohydrates on a titanium-nickel alloy electrode and its application to a liquid chromatography detector” J. Chromatogr. A 1999, 837, 17-24.
    11. Salimi, A., Abdi, K. “Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol-gel technique: application to amperometric detection of hydrazine and hydroxyl amine,” Talanta 2004, 63, 475-483.
    12. Casella, I.C., Gatta, M., Cataldi, T.R.I. “Amperometric determination of underivatized amino acids at a nickel-modified gold electrode by anion-exchange chromatography,” J. Chromatogr. A 2000, 878, 57-67.
    13. Ali, A.H., Zaera, F. “Kinetic study on the selective catalytic oxidation of 2-propanol to acetone over nickel foils,” J. Mol. Catal. A-Chem. 2002, 177, 215-235.
    14. Fiorito, P.A., de Torresi, S.I.C. “Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors,” J. Electroanal. Chem. 2005, 581, 31-37.
    15. Jacquinot, P., Hauser, P.C. “Ni(II)cyclam catalyzed reduction of CO2 - Towards a voltammetric sensor for the gas phase,” Electroanalysis 2003, 15, 1437-1444.
    16. Bode, H., Dehmelt, K., Witte, J. “Zur Kenntnis der nickelhydroxidelektrode-I. Uber das nickel (II)-hydroxidehydrat” Electrochim. Acta 1966, 11, 1079-1087.
    17. Natta, G. Gazz. Chim. Ital. 1928, 58, 344.
    18. Lotmar, W., Feictknecht, W., Kristalogr, Z. Mineral. Petroga. Abt. A 1936, 93, 368.
    19. Delahaye-Vidal, A., Figlarz, M. “Textural and structural studies on nickel hydroxide electrodes. II. Turbostratic nickel (II) hydroxide submitted to electrochemical redox cycling,” J. Appl. Electrochem. 1987, 17, 589-599.
    20. Bode, H., Angew. Chem. 1961, 73, 553.
    21. Le-Bihan, S., Guenot, J., Figlarz, M. C. R. Acad. Sci. 1970, C270, 2131.
    22. Le-Bihan, S., Figlarz, M. J. Cryst. Growth 1972, 13/14, 458.
    23. Oliva, P., Leonardi, J., Laurent, J. F., Delmas, C., Braconnier, J. J., Figlarz, M., Fievet, F., De-Guibert, A. “Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides” J. Power Sources 1982, 8, 229-255.
    24. Singh, D. “Characteristics and effects of gamma-NiOOH on cell performance and a method to quantify it in nickel electrodes,” J. Electrochem. Soc. 1998, 145, 116-120.
    25. Mo, Y.B., Hwang, E., Scherson, D.A. “In situ quartz crystal microbalance studies of nickel hydrous oxide films in alkaline” J. Electrochem. Soc. 1996, 143, 37-43.
    26. Cheek, G.T., O’Grady, W.E. “Redox behavior of the nickel oxide electrode system: Quartz crystal microbalance studies” J. Electroanal. Chem. 1997, 421, 173-177.
    27. Kim, M.S., Hwang, T.S., Kim, K.B. “A study of the electrochemical redox behavior of electrochemically precipitated nickel hydroxides using electrochemical quartz crystal microbalance,” J. Electrochem. Soc. 1997, 144, 1537-1543.
    28. Kim, M.S., Kim, K.B. “A study on the phase transformation of electrochemically precipitated nickel hydroxides using an electrochemical quartz crystal microbalance” J. Electrochem. Soc. 1998, 145, 507-511.
    29. Bernard, P., Gabrielli, C., Keddam, M., Takenouti, H., Leonardi, J., Blanchard, P. “Ac quartz crystal microbalance applied to the studies of the nickel hydroxide behaviour in alkaline solutions” Electrochimica Acta, 1991, 36, 743-746.
    30. Bernard, M.C., Bernard, P., Keddam, M., Senyarich, S., Takenouti, H. “Characterisation of new nickel hydroxides during the transformation of alpha Ni(OH)2 to beta Ni(OH)2 by ageing” Electrochim. Acta 1996, 41, 91-93.
    31. Kostecki, R., McLarnon, F. “Electrochemical and in situ Raman spectroscopic characterization of nickel hydroxide electrodes” J. Electrochem. Soc. 1997, 144, 485-493.
    32. Delmas, C., Tessier, C. “Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activity” J. Mater. Chem. 1997, 7, 1439-1443.
    33. Deabate, S., Henn, F. “Structural modifications and electrochemical behaviour of the beta(II)-Ni(OH)(2)/beta(III)-NiOOH redox couple upon galvanostatic charging discharging cycling” Electrochim. Acta 2005, 50, 2823-2835.
    34. OGrady, W.E., Pandya, K.I., Swider, K.E., Corrigan, D.A. “In situ x-ray absorption near-edge structure evidence for quadrivalent nickel in nickel battery electrodes,” J. Electrochem. Soc. 1996, 143, 1613-1616.
    35. Kim, J.W., Park, S.M. “In situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanol,” J. Electrochem. Soc. 2003, 150, E560-E566.
    36. Fleischmann, M., Korinek, K., Pletcher, D. “The oxidation of organic compounds at a nickel anode in alkaline solution” J. Electroanal. Chem. 1971, 31, 39-49.
    37. Fleischmann, M., Korinek, K., Pletcher, D., “The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes” J. Chem. Soc., Perkin Trans. 2, 1972, 10, 1396-1403.
    38. Vértes G., Horányi, G. “Some problems of the kinetics of the oxidation of organic compounds at oxide-covered nickel electrodes” J. Electroanal. Chem., 1974, 52, 47-53.
    39. Robertson, P. M. “On the oxidation of alcohols and amines at nickel oxide electrodes: mechanistic aspects” J. Electroanal. Chem., 1980, 111, 97-104.
    40. Taraszewska J., Ros onek, G. “Electrocatalytic oxidation of methanol on a glassy carbon electrode modified by nickel hydroxide formed by ex situ chemical precipitation” J. Electroanal. Chem., 1994, 364, 209-213.
    41. El-Shafei, A.A. “Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium” J. Electroanal. Chem., 1999, 471, 89-95.
    42. Rahim, M.A.A., Hameed, R.M.A., Khalil, M.W. “Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium” J. Power Sources 2004, 134, 160-169.
    43. Kowal, A., Port, S.N., Nichols, R.J. “Nickel hydroxide electrocatalysts for alcohol oxidation reactions: An evaluation by infrared spectroscopy and electrochemical methods,” Catal. Today 1997, 38, 483-492.
    44. Herrero, E., Fernández-Vega, A., Feliu, J. M., Aldaz,A. “Poison formation reaction from formic acid and methanol on Pt(111) electrodes modified by irreversibly adsorbed Bi and As,” J. Electroanal. Chem. 1993, 350, 73-88
    45. Li, N.H., Sun, S.G., Chen, S.P. “Studies on the role of oxidation states of the platinum surface in electrocatalytic oxidation of small primary alcohols,” J. Electroanal. Chem. 1997, 430, 57-67.
    46. Santos, V.P., Del, C. V., Bezerra, R.M., Tremiliosi, G. „Studies of the morphology, composition and reactivity of osmium nanodeposits on platinum single crystal electrodes” Electrochim. Acta 2004, 49, 1221-1231.
    47. Love, J.G., Brooksby, P.A., McQuillan, A.J. “Infrared spectroelectrochemistry of the oxidation of absolute methanol at a platinum electrode,” J. Electroanal. Chem. 1999, 464, 93-100.
    48. Lu, G.Q., Chrzanowski, W., Wieckowski, A. “Catalytic methanol decomposition pathways on a platinum electrode,” J. Phys. Chem. B 2000, 104, 5566-5572.
    49. Lee, J., Eickes, C., Eiswirth, M., Ertl, G. “Electrochemical oscillations in the methanol oxidation on Pt,” Electrochim. Acta 2002, 47, 2297-2301.
    50. Yanez, C., Gutierrez, C., Ureta-Zanartu, M.S. “Electrooxidation of primary alcohols on smooth and electrodeposited platinum in acidic solution,” J. Electroanal. Chem. 2003, 541, 39-49.
    51. Xu, W.L., Lu, T.H., Liu, C.P., Xing, W. “Supplement to the theory of normal pulse voltammetry and its application to the kinetic study of methanol oxidation on a polycrystalline platinum electrode,” J. Phys. Chem. B 2005, 109, 7872-7877.
    52. Ley, K.L., Liu, R.X., Pu, C., Fan, Q.B., Leyarovska. N., Segre, C., Smotkin, E.S. “Methanol oxidation on single-phase Pt-Ru-Os ternary alloys,” J. Electrochem. Soc. 1997, 144, 1543-1548.
    53. Zhou, W.J., Li, W.Z., Song, S.Q., Zhou, Z.H., Jiang, L.H., Sun, G.Q., Xin, Q., Poulianitis, K., Kontou, S., Tsiakaras, P. “Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells,” J. Power Sources 2004, 131, 217-223.
    54. Zhou, W.J., Zhou, Z.H., Song, S.Q., Li, W.Z., Sun, G.Q., Tsiakaras, P., Xin, Q. “Pt based anode catalysts for direct ethanol fuel cells,” Appl. Catal. B-Environ. 2003, 46, 273-285.
    55. Liu, R.X., Iddir, H., Fan, Q.B., Hou, G.Y., Bo, A.L., Ley, K.L., Smotkin, E.S., Sung, Y.E., Kim, H., Thomas, S., Wieckowski, A. “Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes” J. Phys. Chem. B 2000, 104, 3518-3531.
    56. Li, W.S., Tian, L.P., Huang, Q.M., Li, H., Chen, H.Y., Lian, X.P. “Catalytic oxidation of methanol on molybdate-modified platinum electrode in sulfuric acid solution” J. Power Sources 2002, 104, 281-288.
    57. Vigier, F., Coutanceau, C., Hahn, F., Belgsir, E.M., Lamy, C. “On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies,” J. Electroanal. Chem. 2004, 563, 81-89.
    58. Xu, C.W., Shen, P.K. “Electrochemical oxidation of ethanol on Pt-CeO2/C catalysts,” J. Power Sources 2005, 142, 27-29.
    59. Shieh, D. T., Hwang, B. J. “Kinetics for electro-oxidation of ethanol on thermally prepared ruthenium oxide in alkaline solution” J. Electrochem. Soc. 1995, 142, 816-823.
    60. de Andrade, A.R., Donate, P.M., Alves, P.P.D., Fidellis, C.H.V., Boodts, J.F.C. “Ethanol electro-oxidation in ruthenium-oxide-coated titanium electrodes” J. Electrochem. Soc. 1998, 145, 3839-3843.
    61. Kim, J.W., Park, S.M. “Electrochemical oxidation of ethanol at thermally prepared RuO2-modified electrodes in alkaline media” J. Electrochem. Soc. 1999, 146, 1075-1080.
    62. Burke, L. D., McCarthy, M., “Oxygen gas evolution at, and deterioration of, RuO2/ZrO2-coated titanium anodes at elevated temperature in strong base” Electrochim. Acta 1984, 29, 211-216.
    63. Burke, L.D., O'Sullivan, J.F., O'Dwyer, K.J., Scannell, R.A., Ahern, M.J.G., McCarthy, M.M., “Incipient hydrous oxide species as inhibitors of reduction processes at noble metal electrode” J. Electrochem. Soc. 1990, 137, 2476-2481.
    64. Ureta-Zañartu, M. S. Bravo, P. and Zagal, J.H. “Methanol oxidation on modified iridium electrodes,” J. Electroanal. Chem. 1992, 337, 241-251.
    65. Hefny, M.M., Abdel. W.S. “Electro-oxidation at a coated iridium electrode,” Electrochim. Acta 1996, 41, 1419-1422.
    66. Fidelis, C.H.V., Donate, P.M., de Andrade, A.R. “Electro-oxidation of ethanol in Ti/IrO2,” Quim. Nova 2001, 24, 43-46.
    67. Natile, M.M., Glisenti, A. “Surface reactivity of NiO/Co3O4 and Fe2O3/Co3O4 nanocomposite catalysts: interaction with methanol” J. Mol. Catal. A-Chem. 2004, 217, 175-184.
    68. Stuchinskaya, T.L., Musawir, M., Kozhevnikova, E.F., Kozhevnikov, I.V., “Liquid-phase oxidation of alcohols by oxygen and nitrous oxide catalysed by Ru-Co oxide” J. Catal. 2005, 231, 41-47.
    69. Wang, M., Guo, D.J., Li, H.L. “High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation,” J. Solid State Chem. 2005, 178, 1996-2000.
    70. Lin, R., Luo, M.F., Xin, Q., Sun, G.Q. “The mechanism studies of ethanol oxidation on PdO catalysts by TPSR techniques” Catal. Lett. 2004, 93, 139-144.
    71. Soares, A.P.V., Portela, M.F. “Methanol selective oxidation to formaldehyde over iron-molybdate catalysts,” Catal. Rev.-Sci. Eng. 2005, 47, 125-174.
    72. Pestryakov, A.N., Petranovskii, V.P., Pfander, N., Knop-Gericke, A. “Supported foam-copper catalysts for methanol selective oxidation,” Catal. Commun. 2004, 5, 777-781.
    73. Wang, W., Zhang, H.B., Lin, G.D., Xiong, Z.T. „Study of Ag/La0.6Sr0.4MnO3 catalysts for complete oxidation of methanol and ethanol at low concentrations,” Appl. Catal. B-Environ. 2000, 24, 219-232.
    74. Shobha, T., Aravinda, C.L., Devi, L.G., Mayanna, S.M., “Preparation and characterization of oxides of Ni-Cu: anode material for methanol oxidative fuel cells” J. Solid State Electrochem. 2003, 7, 451-455.
    75. Shobha, T., Aravinda, C.L., Bera, P., Devi, L.G., Mayanna, S.M., “Characterization of Ni-Pd alloy as anode for methanol oxidative fuel cell” Mater. Chem. Phys. 2003, 80, 656-661.
    76. Newton, M.A. “The oxidative dehydrogenation of methanol at the CuPd and Cu: Effects of alloying on reactivity and reaction pathways,” J. Catal. 1999, 182, 357-366.
    77. Prabhuram, J., Manoharan, R., Vasan, H.N. “Effects of incorporation of Cu and Ag in Pd on electrochemical oxidation of methanol in alkaline solution,” J. Appl. Electrochem. 1998, 28, 935-941.
    78. Field, L.D., Li, H.L., Messerle, B.A., Smernik, R.J., Turner, P. “An iron(II) dihydrogen hydrido complex containing the tripodal tetraphosphine ligand P(CH2CH2PMe2)3” Dalton Trans. 2004, 9, 1418-1423.
    79. Du, G.D., Woo, L.K. “Alcohol oxidation with dioxygen mediated by oxotitanium porphyrin and related transition metal complexes” J. Porphyr. Phthalocyanines 2005, 9, 206-213.
    80. Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. “Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs,” Appl. Catal. B-Environ. 2005, 56, 9-35.
    81. Antolini, E. “Formation of carbon-supported PtM alloys for low temperature fuel cells: a review,” Mater. Chem. Phys. 2003, 78, 563-573.
    82. Cong, H.N.; El Abbassi, K.; Chartier, P. “Electrically conductive polymer/metal oxide composite electrodes for oxygen reduction,” Electrochem. Solid State Lett. 2000, 3 192-195.
    83. Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E.S.; Mallouk, T.E. “Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts,” Science 1998, 280, 1735-1737.
    84. Smotkin, E.S.; Diaz-Morales, R.R. “New electrocatalysts by combinatorial methods,” Ann. Rev. Mater. Res. 2003, 33, 557-579.
    85. Fernandez, J.L.; Walsh, D.A.; Bard, A.J. “Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co (M : Pd, Ag, Au),” J. Amer. Chem. Soc. 2005, 127, 357-365.
    86. Yaropolov, A.I.; Kharybin, A.N.; Emneus, J.; MarkoVarga, G.; Gorton, L. “Electrochemical properties of some copper-containing oxidases,” Bioelectrochem. Bioenerg. 1996, 40, 49-57.
    87. Tsujimura, S.; Kano, K.; Ikeda, T. “Bilirubin oxidase in multiple layers catalyzes four-electron reduction of dioxygen to water without redox mediators,” J. Electroanal. Chem. 2005, 576, 113-120.
    88. Tarasevich, M.R.; Bogdanovskaya, V.A.; Kapustin, A.V. “Nanocomposite material laccase/dispersed carbon carrier for oxygen electrode,” Electrochem. Commun. 2003, 5, 491-496.
    89. Duran, N,; Esposito, E. “Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review,” Appl. Catal. B-Environ. 2000, 28, 83-99.
    90. Nistor, C.; Emneus, J. “Bioanalytical tools for monitoring polar pollutants,” Waste Manage. 1999, 19, 147-170.
    91. Barton, S.C.; Kim, H.H.; Binyamin, G.; Zhang, Y.C.; Heller, A. “The "wired" laccase cathode: High current density electroreduction of O2 to water at +0.7 V (NHE) at pH 5,” J. Am. Chem. Soc. 2001, 123, 5802-5803.
    92. Barriere, F.; Ferry, Y.; Rochefort, D.; Leech, D. “Targeting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell,” Electrochem. Commun. 2004, 6, 237-241.
    93. Tsujimura, S.; Tatsumi, B.; Ogawa, J.; Shimizu, S.; Kano, K.; Ikeda, T. “Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2'-azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator,” J. Electroanal. Chem. 2001, 496, 69-75.
    94. Liu, Z.J.; Deng, J.Q.; Li, D.A. “new tyrosinase biosensor based on tailoring the porosity of A12O3 sol-gel to co-immobilize tyrosinase and the mediator,, Anal. Chim. Acta 2000, 407, 87-96.
    95. Zhang, C.X.; Gao, Q.; Aizawa, M.; “Flow injection analytical system for glucose with screen-printed enzyme biosensor incorporating Os-complex mediator,” Anal. Chim. Acta 2001, 426, 33-41.
    96. Gupta, G.; Rajendran, V.; Atanassov, P. “Bioelectrocatalysis of oxygen reduction reaction by laccase on gold electrodes,” Electroanalysis 2004, 16, 1182-1185.
    97. Bogdanovskaya, V.A.; Tarasevich, M.R.; Kuznetsova, L.N.; Reznik, M.F.; Kasatkin, E.V. “Peculiarities of direct bioelectrocatalysis by laccase in aqueous-nonaqueous mixtures,” Biosens. Bioelectron. 2002, 17, 945-951.
    98. Boulatov, R.; Collman, J. P.; Shiryaeva, I. M. Sunderland, C. J. “Functional analogues of the dioxygen reduction site in cytochrome oxidase: Mechanistic aspects and possible effects of Cu-B,” J. Am. Chem. Soc. 2002, 124, 11923-11935
    99. Santagostini, L.; Gullotti, M.; Pagliarin, R.; Monzanic, E.; Casella, L. “Enantio-differentiating catalytic oxidation by a biomimetic trinuclear copper complex containing L-histidine residues,” Chem. Commun. 2003, 17, 2186-2187.
    100. Ricard, D.; L'Her, M.; Richard, P.; Boitrel, B. “Iron porphyrins as models of cytochrome c oxidase,” Chem.-Eur. J. 2001, 7, 3291-3297.
    101. Yoshida, H. J. Chem. Soc. 1883, 43, 472-286.
    102. Bertrand, G. C. R. Acad. Sci. (Paris) 1985, 120, 266-269.
    103. Messerschmidt, A. Multi-Copper Oxidases; World Scientific: Singapore, 1977.
    104. Duran, N.; Rosa, M.A.; D'Annibale, A.; Gianfreda, L. “Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review,” Enzyme Microb. Technol. 2002, 31, 907-931.
    105. Spiro, T. G. Copper Proteins; John Wiley and Sons: New York, 1981: Vol 3.
    106. Hanna, P.M.; Antholine, W.E.; Pasenkiewiczgierula, M.; Reinhammar, B.; Mcmillin, D.R. “Type-2-Depleted Fungal Laccase,” Biochem. J. 1988, 253, 561-568.
    107. Lee, S.K.; George, S.D.; Antholine, W.E.; Hedman, B.; Hodgson, K.O.; Solomon, E.I. “Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase,” J. Amer. Chem. Soc. 2002, 124, 6180-6193.
    108. Tarasevich, M. R.; Yaropolov, A. I.; Bogdanovskaya, V. A.; Varfolomeev, S.D. Bioelectrochem. Bioenerg. 1979, 6, 393-403.
    109. Tarasevich, M.R.; Bogdanovskaya, V.A.; Gavrilova, E.F.; Orlov, S.B. “Electrocatalysis of Cathodic Molecular-Oxygen Reduction with Bio-Polymers Enzymes and Their Models,” J. Electroanal. Chem. Interfacial Electrochem. 1986, 206, 217-227.
    110. Santucci, R.; Ferri, T.; Morpurgo, L.; Savini, I.; Avigliano, L. “Unmediated heterogeneous electron transfer reaction of ascorbate oxidase and laccase at a gold electrode,” Biochem. J. 1998, 332, 611-615.
    111. Trudeau, F.; Daigle, F.; Leech, D. “Reagentless mediated laccase electrode for the detection of enzyme modulators,” Anal. Chem. 1997, 69, 882-886.
    112. Lee, C.W.; Gray, H. B.; Anson, F. C.; Malmstroem, B. G. J. Electroanal. Chem. Interfacial Electrochem. 1984, 172, 289.
    113. Thuesen, M.H.; Farver, O.; Reinhammar, B.; Ulstrup, J. “Cyclic voltammetry and electrocatalysis of the blue copper oxidase Polyporus versicolor laccase,” Acta Chem. Scand. 1998, 52, 555-562.
    114. Barton, S.C.; Kim, H.H.; Binyamin, G.; Zhang, Y.C. ; Heller A. “Electroreduction of O-2 to water on the "Wired" laccase cathode,” J. Phys. Chem. B 2001, 105, 11917-11921.
    115. Deschamps, P.; These d’universite, Faculate de Pharmacie, Universite Paris XI, Chatenay-Malabry, 2002.
    116. Sarkar, B.; Kruck, T.P.A. in: Peisach, J.; Aisen, P.; Blumberg, W. (Eds.) Biochemistry of Copper, Academic Press, New York, 1966, 183.
    117. Kruck, T. P. A.; Sarkar, B. Can. J. Chem. 1973, 51, 3549.
    118. Kruck, T. P. A.; Sarkar, B. Can. J. Chem. 1973, 51, 3563.
    119. Casella, L.; Gullotti, M.; J. Inorg. Biochem. 1983, 18, 19.
    120. Evertsson, B. Acta Crystallogr. B 1969, 25, 30.
    121. Goodman, B.A.; McPhail, D.B.; Powell, H.K.J. J. Chem. Soc., Dalton Trans. 1981, 822.
    122. Szabo-Planka, T.; Rockenbauer, A.; Korecz, L.; Nagy, D. “An electron spin resonance study of coordination modes in the copper(II)-histamine and copper(II)-L-histidine systems in fluid aqueous solution,” Polyhedron 2000, 19. 1123-1131.
    123. Deschamps, P.; Kulkarni, P.P.; Sarkar, B. “X-ray structure of physiological copper(II)-bis(L-histidinato) complex,” Inorg. Chem. 2004, 43, 3338-3340.
    124. Camerman, N.; Fawcett, J.K.; Ktuck, T.P.A.; Sarkar, B.; Camerman, A. J. Am. Chem. Soc. 1978, 100, 2690.
    125. Deschamps, P.; Kulkarni, P.P., Gautam-Basak, M.; Sarkar, B. “The saga of copper(II)-L-histidine,” Coord. Chem. Rev. 2005, 249, 895-909.
    126. Davis, D. G.; Bordelon, W. R. “Polarography of Some Cu(I) Amino Acid Complexes,” Anal. Lett., 1970, 3, 449-456.
    127. Perez, A.S.; Conde, F.L.; Mendez, J.H. “Polarographic determination of phenylalanine, tyrosine, methionine, glutamic acid and histidine with a dropping copper amalgam electrode,” J. Electroanal.Chem., 1976, 74, 339-346.
    128. Pena M. I.; Lopez, V.; “Electrochemical study of the complexes formed by copper (II) and histidine,” An. Quim., 1986, 82, 28-33.
    129. Bilewicz, R. “The reduction of Cu(II) complexes of histidine and histidyl peptides at mercury electrodes,” J. Electroanal.Chem. 1989, 267, 231-241.
    130. Daniele, S.; Pena, M. J. “Cyclic voltammetry investigation of the Cu-Histide system at platinum conventional and microelectrodes,” Electrochim. Acta 1993, 38, 165-174.
    131. Pecht, I.; A. Levitzki, A.; Anbar, M. “The Copper-Poly-L-histidine Complex. I. The Environmental Effect of the Polyelectrolyte on the Oxidase Activity of Copper Ions,” J. Am. Chem. Soc., 89, 1587 (1967).
    132. Levitzki, A.; Pecht, I.; Berger, A. “Copper-poly-L-histidine complexes. II. Physicochemical properties,” J. Amer. Chem. Soc. 1972, 94, 6844-6849.
    133. Palumbo, M.; Cosani, A.; Terbojevich, M.; Peggion, E. “Metal Complexes of Poly( -amino acids). Conformational Aspects of the Interaction between Cupric Ions and Poly(L-histidine),” Macromolecules 1978, 11, 1271-1275.
    134. Wasylishen, R. E.; Cohen, J. S. “Influence of copper(II) on proton nuclear relaxation rates of poly-L-histidine,” J. Am. Chem. Soc. 1977, 99, 2480-2482.
    135. Moreira, J.C.; Zhao, R.; Fogg, A.G. “Modification of electrodes with adsorbed polyamino acids. Part 1. Cathodic Stripping Voltammetric Determination of Copper(II) at a Hanging Mercury Drop Electrode Using Adsorptive Accumulation on an Adsorbed Layer of Poly-L-histidine,” Analyst 1990, 115, 1561-1564.
    136. Thomas, G.; Zacharias P.S. “Cyclic voltammetric studies of copper(II) dipeptide complexes. Evidence for copper(I) dipeptide complexes in aqueous media,” Polyhedron 1984, 3, 861-866.
    137. Thomas, G.; Zacharias P.S. “Cyclic voltammetric studies of copper(II) amino acid complexes: Electrochemical evidence for the generation of copper(I) complex as an intermediate,” Polyhedron 1985, 4, 811-816.
    138. Hasebe, Y.; Akiyama, T.; Yagisawa, T.; Uchiyama, S. “Enzyme-less amperometric biosensor for L-ascorbate using poly-L-histidine-copper complex as an alternative biocatalyst,” Talanta 1998, 47, 1139-1147.
    139. Levitzki, A.; Pecht, I.; Anbar, M. “Oxidase-like activity of the copper (II) ploy-L-histidine complex,” Nature, 1965, 207, 1386-1387.
    140. Ueda, J.; Hanaki, A. “Copper(II)-poly-L-histidine as an enzyme model for L-ascorbate oxidase,” Bull. Chem. Soc. Jpn. 1984, 57, 3511-3516.
    141. Gopel, W., Hesse, J., Zemel, J.N., Sensors: a comprehensive survey, VCH, New York, 1989.
    142. Hughes, W. S. “The potential difference between glass and electrolyte in contact with water,” J. Am. Chem. Soc. 1922, 44, 2860-2866.
    143. Clark L. C. J., Lyons C. “Electrode system for continuous monitoring in cardipvascular surgery” Ann. NY Acad. Sci. 1962, 148, 133-153.
    144. Taylor, R. F., Schultz. J. S., Handbook of chemical and biological sensors, Institute of Physics Pub., Philadelphia, 1996.
    145. Taylor R.F., Biosensors: Technology, Application and Markets, MA: Decision Resource, Waltham, 1990.
    146. http://www.tifac.org.in/offer/vis/sens/summ.pdf
    147. http://www.freedoniagroup.com/Sensors.html
    148. Cunningham, A. J., Introduction to bioanalytical sensors, Wiley, New York, 1998.
    149. Gardner, J. W., Microsensors :principles and applications, Wiley, New York, 1994.
    150. Tomchenko, A.A., Harmer, G.P., Marquis, B.T., Allen, J.W. “Semiconducting metal oxide sensor array for the selective detection of combustion gases,” Sens. Actuator B-Chem. 2003, 93, 126-134.
    151. Sauerbrey, G. Z., Applications of Piezoelectric Quartz Crystal Microbalances, Elsevier Press, New York, p.26, 1984.
    152. O'Sullivan, C.K., Guilbault, G.G. “Commercial quartz crystal microbalances - theory and applications” Biosens. Bioelectron. 1999, 14, 663-670.
    153. Edmonds, T. E., Chemical sensors, Chapman and Hall, New York, 1988.
    154. Marazuela, M.D., Moreno-Bondi, M.C. “Fiber-optic biosensors - an overview” Anal. Bioanal. Chem. 2002, 372, 664-682.
    155. Caputi, A., Mooney, D.P., “Gas-chromatographic determination of alcohol in wine-a collaborative study,” J. Assoc. Off. Anal. Chem. 1983, 66, 1152-1157.
    156. Pellegrino, S., Bruno, F.S., Petrarulo, M. “Liquid-chromatographic determination of ethyl-alcohol in body-fluids,” J. Chromatogr. B 1999, 729, 103-110.
    157. Rosendal, I., Schmidt, F., “For the conversion of specific-gravity of distillate to alcohol content in beer analysis the OIML table is recommended - polynomials are given for alcohol and extract,” J. I. Brewing 1987, 93, 373-377.
    158. Rao, S.M. “Spectrographic technique for determining refractive indexes,” Opt. Eng. 1997, 36, 162-166.
    159. Rangel, A.O.S.S., Toth, I.V., “Determination of alcohol in wines by flow-injection spectrophotometry using gas-diffusion and an immobilized enzyme reactor,” Am. J. Enol. Viticult. 1999, 50, 259-263.
    160. Brousse, T., Schleich, D.M., “ Sprayed and thermally evaporated SnO2 thin films for ethanol sensors,” Sens. Actuator B-Chem. 1996, 31, 77-79.
    161. Liu, X.Q., Xu, Z.L., Liu, Y.F., Shen, Y. “A novel high performance ethanol gas sensor based on CdO-Fe2O3 semiconducting materials” Sens. Actuator B-Chem. 1998, 52, 270-273.
    162. Liu, Y.F., Liu, X.Q., Yu, J.J. “A study on the novel gas-sensing solid solution material (Cd1-xAgx)2Sb2O6.8” Sens. Actuator B-Chem. 1999, 61, 208-212.
    163. Zhang, T.S., Hing, P., Zhang, J.C., Kong, L.L. “Ethanol-sensing characteristics of cadmium ferrite prepared by chemical coprecipitation” Mater. Chem. Phys. 1999, 61, 192-198.
    164. Zhang, T.S., Hing, P., Li, Y., Zhang, J.C. “Selective detection of ethanol vapor and hydrogen using Cd-doped SnO2-based sensors,” Sens. Actuator B-Chem. 1999, 60 208-215.
    165. Reddy, C.V.G., Seela, K.K., Manorama, S.V. “Preparation of gamma-Fe2O3 by the hydrazine method - Application as an alcohol sensor” Int. J. Inorg. Mater. 2000, 2, 301-307.
    166. Dong, Y.F., Wang, W.L., Liao, K.J., “Ethanol-sensing characteristics of pure and Pt-activated CdIn2O4 films prepared by r.f. reactive sputtering” Sens. Actuator B-Chem. 2000, 67, 254-257.
    167. Sberveglieri, G., Comini, E., Faglia, G., Atashbar, M.Z., Wlodarski, W. “Titanium dioxide thin films prepared for alcohol microsensor applications” Sens. Actuator B-Chem. 2000, 66, 139-141.
    168. Tan, O.K., Cao, W., Zhu, W. “Alcohol sensor based on a non-equilibrium nanostructured xZrO2-(1-x)alpha-Fe2O3 solid solution system” Sens. Actuator B-Chem. 2000, 63, 129-134.
    169. Weber, I.T., Andrade, R., Leite, E.R., Longo, E. “A study of the SnO2•Nb2O5 system for an ethanol vapour sensor: a correlation between microstructure and sensor performance” Sens. Actuator B-Chem. 2001, 72, 180-183.
    170. Tao, S.W., Gao, F., Liu, X.Q., Sorensen, O.T. “Ethanol-sensing characteristics of barium stannate prepared by chemical precipitation” Sens. Actuator B-Chem. 2000, 71, 223-227.
    171. Ge, X.T., Liu, Y.F., Liu, X.Q. “Preparation and gas-sensitive properties of LaFe1-yCoyO3 semiconducting materials,” Sens. Actuator B-Chem. 2001, 79, 171-174.
    172. Reddy, C.V.G., Cao, W., Tan, O.K., Zhu, W. “Preparation of Fe2O3(0.9)-SnO2(0.1) by hydrazine method: application as an alcohol sensor” Sens. Actuator B-Chem. 2002, 81, 170-175.
    173. Garzella, C., Comini, E., Bontempi, E., Depero, L.E., Frigeri, C., Sberveglieri, G. “Sol-gel TiO2 and W/TiO2 nanostructured thin films for control of drunken driving” Sens. Actuator B-Chem. 2002, 83, 230-237.
    174. Reddy, C.V.G., Cao, W., Tan, O.K., Zhu, W., Akbar, S.A. “Selective detection of ethanol vapor using xTiO(2)-(1-x)WO3 based sensor” Sens. Actuator B-Chem. 2003, 94, 99-102.
    175. Pourfayaz, F., Khodadadi, A., Mortazavi, Y., Mohajerzadeh, S.S. “CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4” Sens. Actuator B-Chem. 2005, 108, 172-176.
    176. Huo, L.H., Li, Q., Zhao, H., Yu, L.J., Gao, S., Zhao, J.G. “Sol-gel route to pseudocubic shaped alpha-Fe2O3 alcohol sensor: preparation and characterization” Sens. Actuator B-Chem. 2005, 107, 915-920.
    177. Huo, L.H., Cheng, X.L., Zhao, H., Gao, S., Xu, Y., Zhao, J.G. “Preparation, characterization and gas sensitivity of copper naphthalocyanine derivatives LB films” Colloid Surf. A-Physicochem. Eng. Asp. 2005, 257-58, 137-141.
    178. Leca, B., Marty, J.L. “Reagentless ethanol sensor based on a NAD-dependent dehydrogenase” Biosens. Bioelectron. 1997, 12, 1083-1088.
    179. Castanon, M.J.L., Ordieres, A.J.M., Blanco, P.T. “Amperometric detection of ethanol with poly-(o-phenylenediamine)-modified enzyme electrodes” Biosens. Bioelectron. 1997, 12, 511-520.
    180. Park, J.K., Yee, H.J., Lee, K.S., Lee, W.Y., Shin, M.C., Kim, T.H., Kim, S.R. “Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase” 1999, Anal. Chim. Acta, 390, 83-91.
    181. Ramanavicius, A., Habermuller, K., Csoregi, E., Laurinavicius, V., Schuhmann, W. “Polypyrrole entrapped quinohemoprotein alcohol dehydrogenase. Evidence for direct electron transfer via conducting-polymer chains” Anal. Chem. 1999, 71, 3581-3586.
    182. Boujtita, M., Hart, J.P., Pittson, R. “Development of a disposable ethanol biosensor based on a chemically modified screen-printed electrode coated with alcohol oxidase for the analysis of beer” Biosens. Bioelectron. 2000, 15, 257-263.
    183. Gulce, H., Gulce, A., Kavanoz, M., Coskun, H., Yildiz, A. “A new amperometric enzyme electrode for alcohol determination” Biosens. Bioelectron. 2002, 17, 517-521.
    184. Mitsubayashi, K., Matsunaga, H., Nishio, G., Toda, S., Nakanishi, Y. “Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking” Biosens. Bioelectron. 2005, 20, 1573-1579.
    185. Dominguez, E., Lan, H. L., Okamoto, Y., Hale, P. D., Skotheim, T. A., Gorton, L. Hahn-Hagerdal, B., “Reagentless chemically modified carbon paste electrode based on a phenothiazine polymer derivative and yeast alcohol dehydrogenase for the analysis of ethanol” Biosens. Bioelectron. 1993, 8, 229-237.
    186. Hayes, E.T., Bellingham, B.K., Mark, H.B., Galal, A. “An amperometric aqueous ethanol sensor based on the electrocatalytic oxidation at a cobalt-nickel oxide electrode” Electrochim. Acta 1996, 41, 337-344.
    187. Chen, Y., Chen, K.Y., Tseung, A.C.C. “An electrochemical alcohol sensor based on a co-electrodeposited Pt vertical bar WO3 electrode” J. Electroanal. Chem. 1999, 471, 151-155.
    188. Ballarin, B., Seeber, R., Tonelli, D., Zanardi, C. “Anionic clay modified electrode for detection of alcohols. An electrocatalytic amperometric sensor” Electroanalysis 2000, 12, 434-441.
    189. Paixao, T.R.L.C., Bertotti, M. “Development of a breath alcohol sensor using a copper electrode in an alkaline medium” J. Electroanal. Chem. 2004, 571, 101-109.
    190. Schiavon, G., Comisso, N., Toniolo, R., Bontempelli, G. “Pulsed amperometric detection of ethanol in breath by gold electrodes supported on ion exchange membranes (solid polymer electrolytes)” Electroanalysis, 1995, 8, 544 – 548.
    191. Jacquinot, P., Hodgson, A.W.E., Muller, B., Wehrli, B., Hauser, P.C. “Amperometric detection of gaseous ethanol and acetaldehyde at low concentrations on an Au-Nafion electrode” Analyst 1999, 124, 871-876.
    192. Millet, P., Michas, A., Durand, R. “A solid polymer electrolyte-based ethanol gas sensor” J. Appl. Electrochem. 1996, 26, 933-937.
    193. Kim, K.C., Cho, S.M., Choi, H.G. “Detection of ethanol gas concentration by fuel cell sensors fabricated using a solid polymer electrolyte” Sens. Actuator B-Chem. 2000, 67, 194-198.
    194. Petersen, K. E. “Silicon as Mechanical Material” Proc. IEEE, vol. 1982, 70, 420-457.
    195. Suzuki, H. “Advances in the microfabrication of electrochemical sensors and systems” Electroanalysis, 2000, 12, 703-715.
    196. Qinghai, Wu., Lee1, K. M., Liu, C. C. “Development of chemical sensors using microfabrication and micromachining techniques” Sens. Actuator B-Chem. 1993, 13, 1-6.
    197. Wang, J., Chen, Q. “Screen-printed glucose strip based on palladium-dispersed carbon ink,” Analyst, 1994, 119, 1849-1851.
    198. Fan, F.-R. F.; Bard, A. J. “Scanning Tunneling Microscopic Studies of Platinum Electrode Surfaces,” Anal. Chem., 1988, 60, 751.
    199. Bard, A. J.; Mirkin, M. V.; Eds.; Scanning Electrochemical Microscopy, Marcel Dekker, Inc.; New York, 2001.
    200. Wightman, R. M.; Wipf, D. O, Electroanalytical Chemistry, Bard, A. J., Ed.; Marcel Dekker: New York, 1989; Vol. 15.
    201. Martin, R.D.; Unwin, P.R. “Theory and experiment for the substrate generation tip collection mode of the scanning electrochemical microscope: Application as an approach for measuring the diffusion coefficient ratio of a redox couple,” Anal. Chem. 1998, 70, 276-284.
    202. Demaille, C.; Bard, A.J. “Kinetics and mechanism of the anodic dimerization of trans-anethole studied by cyclic voltammetry and scanning electrochemical microscopy,” Acta Chim. Sinica 1999, 53, 842-848.
    203. Shiku, H.; Uchida, I.; Matsue, T. “Microfabrication of alkylsilanized glass substrate by electrogenerated hydroxyl radical using scanning electrochemical microscopy,” Langmuir 1997, 13, 7239-7244.
    204. Mirkin, M.V.; Horrocks, B.R. “Electroanalytical measurements using the scanning electrochemical microscope,” Anal. Chim. Acta 2000, 406, 119-146.
    205. Turyan, I.; Matsue, T.; Mandler, D. “Patterning and characterization of surfaces with organic and biological molecules by the scanning electrochemical microscope,” Anal. Chem. 2000, 72, 3431-3435.
    206. Liu, B.; Rotenberg, S.A.; Mirkin, M.V. “Scanning electrochemical microscopy of living cells: Different redox activities of nonmetastatic and metastatic human breast cells,” Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 9855-9860.
    207. Nishizawa, M.; Takoh, K.; Matsue, T. “Micropatterning of HeLa cells on glass substrates and evaluation of respiratory activity using microelectrodes,” Langmuir 2002, 18, 3645-3649.
    208. Gyurcsanyi, R.E.; Jagerszki, G.; Kiss, G.; Toth, K. “Chemical imaging of biological systems with the scanning electrochemical microscope,” Bioelectrochemistry 2004, 63, 207-215.
    209. Tsionsky, M.; Bard, A.J.; Mirkin, M.V. “Scanning electrochemical microscopy. 34. Potential dependence of the electron-transfer rate and film formation at the liquid/liquid interface,” J. Phys. Chem. 1996, 100, 17881-17888.
    210. Shao, Y.H.; Mirkin, M.V. “Probing ion transfer at the liquid/liquid interface by scanning electrochemical microscopy,” J. Phys. Chem. B 1998, 102, 9915-9921.
    211. Liu, B.; Mirkin, M.V. “Potential-independent electron transfer rate at the liquid/liquid interface,” J. Am. Chem. Soc. 1999, 121, 8352-8355.
    212. Combellas, C.; Kanoufi, F.; Mazouzi, D. “Surface modification of halogenated polymers. 8. Local reduction of poly(tetrafluoroethylene) by the scanning electrochemical microscope - Transient investigation,” J. Phys. Chem. B 2004, 108 19260-19268.
    213. Bath, B.D.; Lee, R.D.; White, H.S.; Scott, E.R. “Imaging molecular transport in porous membranes. Observation and analysis of electroosmotic flow in individual pores using the scanning electrochemical microscope,” Anal. Chem. 1998, 70, 1047-1058.
    214. Tsionsky, M.; Zhou, J.F.; Amemiya, S.; Fan, F.R.F.; Bard, A.J.; Dryfe, R.A.W. “Scanning electrochemical microscopy. 38. Application of SECM to the study of charge transfer through bilayer lipid membranes,”Anal. Chem. 1999, 71, 4300-4305.
    215. Wohlfahrt-Mehrens, M., Oesten, R., Wilde, P., Huggins, R.A. “The mechanism of electrodeposition and operation of Ni(OH)2 layers” Solid State Ionics 1996, 86-88, 841-847.
    216. Jayashree, R.S., and Vishnu-Kamath, P., “Factors governing the electrochemical synthesis of alpha-nickel (II) hydroxide” J. Appl. Electrochem. 1999, 29, 449-454.
    217. Corrigan, D. A., Bendert, R. M. “Effect of coprecipitated metal ions on the electrochemistry of nickel hydroxide thin films: Cyclic voltammetry in 1M KOH” J. Electrochem. Soc. 1989, 136, 723-728.
    218. Corrigan, D. A., “Catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes,” J. Electrochem. Soc. 1987, 134, 377-384.
    219. Indira, L., Dixit, M., Kamath, P. V., “Electrosynthesis of layered double hydroxides of nickel with trivalent cations,” 1994, 52, 93-97.
    220. Fischer, W. “Bildungsgeschwindigkeit von nickelhydroxidschichten wärend der kathodischen wasserstoffentwicklung,” Electrochim. Acta 1976, 21, 1001-1007.
    221. Collins, D.H., Power Sources, Oxford, Pergamon Press, vol. 3, 1971.
    222. Mattox, D. M. Handbook of physical vapor deposition (PVD) processing :film formation, adhesion, surface preparation and contamination control, Noyes Publications, N.J., c1998.
    223. Roth, J. R. Industrial plasma engineering, Institute of Physics Pub., Bristol, c1995-Philadelphia.
    224. Chapman, B. Glow discharge processes :sputtering and plasma etching, Wiley, New York, 1980.
    225. Bertin, E.P., Introduction to X-ray Spectrometric Analysis, Plenum Press, New York 1978.
    226. Cullity, B.D., Stock, S.R., Elements of X-Ray Diffraction, Prentice, Hall, 2001.
    227. Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C. Fiori, C., and Lifshin, E. (ed.), Scanning Electron Microscope and X-Ray Microanalysis, Plenum Press, New York and London, 1981, pp.109.
    228. Zhitomirsky, I., Gal-Or, L., “Ruthenium oxide deposits prepared by cathodic electrosynthesis,” Mater. Lett. 1997, 31, 155-159.
    229. Lo, Y.L., Hwang, B.J., “In situ Raman studies on cathodically deposited nickel hydroxide films and electroless Ni-P electrodes in 1 M KOH solution,” Langmuir, 1998, 14, 944-950.
    230. Wu, Z., Wang, B., Dong, S., Wang, E. “Amperometric glucose biosensor based on lipid film,” Biosens. Bioelectr. 2000, 15, 143-147.
    231. Zhang, H.H., Coury, L.A., “Effects of high-intensity ultrasound on glassy-carbon electrodes,” Anal. Chem. 1993, 65, 1552-1558.
    232. Hagan, C.R.S., Coury, L.A., “Comparison of hydrodynamic voltammetry implemented by sonication to a rotating-disk electrode,” Anal. Chem. 1994, 66, 399-405.
    233. Compton, R.G., Eklund, J.C., Page, S.D. Sanders, G.H.W., Booth, J. “Voltammetry in the presence of ultrasound – sono voltammetry and surface effects,” J. Phys. Chem. 1994, 98, 12410-12414.
    234. Loucka, T. “The potential-pH diagram for the Ru-H2O-Cl system at 25 degrees C,” J. Appl. Electrochem. 1990, 20, 522-523.
    235. Faure, C., Delmas, C., Fouassier, M., “Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution” J. Power Sources, 1991, 35, 279-290.
    236. Kamath, P.V., Dixit, M., Indira, L., Shukla, A.K., Kumar, V.G., Munichandraiah, N., “Stabilized Alpha-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells” J. Electrochem. Soc., 1994, 141, 2956-2958.
    237. Rajamathi, M., Vishnu-Kamath, P. “On the relationship between alpha-nickel hydroxide and the basic salts of nickel” J. Power Sources, 1998, 70, 118-121.
    238. Marozzi, C.A., Chialvo, A.C. “Development of electrode morphologies of interest in electrocatalysis. Part I: Electrodeposited porous nickel electrodes” Electrochim. Acta 2000, 45, 2111-2120.
    239. Lo Y.L., Hwang, B.J., “Kinetics of Ethanol Oxidation on Electroless Ni-P/SnO2/Ti Electrodes in KOH Solutions” J. Electrochem. Soc., 1995, 142, 445-450.
    240. Amjad, M., Pletcher, D., Smith, C., “Oxidation of alcohols at a nickel anode in alkaline t-butanol/water mixtures” J. Electrochem. Soc., 1977, 124, 203-206.
    241. Manandhar, K., and Pletcher, D., “Preparation of high surface area nickel oxide electrodes for synthesis” J. Appl. Electrochem., 1979, 9, 707-713.
    242. Rella, R., Siciliano, P., Cricenti, A., Generosi, R., Girasole, M., Vanzetti, L., Anderle, M., Coluzza, C., “A study of physical properties and gas-surface interaction of vanadium oxide thin films.” Thin Solid Films 1999, 349, 254-259.
    243. Singh, D., “Characteristics and effects of gamma-NiOOH on cell performance and a method to quantify it in nickel electrodes.” J. Electrochem. Soc. 1998, 145, 116-120.
    244. Dai, J.X., Li, S.F.Y., Xiao, T.D., Wang, D.M., Reisner, D.E., “Structural stability of aluminum stabilized alpha nickel hydroxide as a positive electrode material for alkaline secondary batteries.” J. Power Sources 2000, 89, 40-45.
    245. Dixit, M., Kamath, P.V., Gopalakrishnan, J., Zinc-substituted alpha-nickel hydroxide as an electrode material for alkaline secondary cells. J. Electrochem. Soc. 1996, 146, 79-82.
    246. Visscher, W., Barendrecht, E., “Investigation of thin-film α-and β-Ni(OH)2 electrodes in alkaline solutions” J. Electroanal. Chem., 1983, 154, 69-80.
    247. King, F.; Quinn, M. J.; Litke, C. D. “Oxygen reduction on copper in neutral NaCl solution,” J. Electroanal. Chem. 1995, 385, 45-55.
    248. King, F.; Litke C.D.; Tang Y. “Effect of Interfacial pH on the Redction of Oxygen on Copper in Neutral NaClO4 Solution,” Electrochim. Acta 2002, 47, 2901-2912.
    249. Vazquez, M.V.; Desanchez, S.R.; Calvo, E.J.; Schiffrin D.J. “The Electrochemical Reduction of Oxygen on Polycrystalline Copper in Borax Buffer,” J. Electroanal. Chem. 1994, 374, 189-197.
    250. Denuault, G.; Mirkin, M. V.; Bard, A. J. “Direct Determination of Diffusion Coefficients by Chronoamperometry at Microdisk Electrodes,” J. Electroanal. Chem. Interfacial. Electrochem. 1991, 308, 27-38.
    251. Fernandez, J.L.; Bard, A.J. “Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode,” Anal. Chem. 2003, 75, 2967-2974.
    252. Mano, N.; Fernandez, J.L.; Kim, Y.; Shin, W.; Bard, A.J.; Heller, A. “Oxygen is electroreduced to water on a "wired" enzyme electrode at a lesser overpotential than on platinum,” J. Am. Chem. Soc. 2003, 125, 15290-15291.
    253. Wang, C.Y., Zhong, S., Konstantinov, K., Walter, G., Liu, H.K. “Structural study of Al-substituted nickel hydroxide,” Solid State Ion. 2002, 148, 503-508.
    254. Tessier, C., Faure, C., Guerlou-Demourgues, L., Denage, C., Nabias, G., Delmas, C. “Electrochemical study of zinc-substituted nickel hydroxide” J. Electrochem. Soc. 2002, 149, A1136-A1145.
    255. Montilla, F., Morallon, E., Duo, I., Comninellis, C., Vazquez, J.L. “Platinum particles deposited on synthetic boron-doped diamond surfaces. Application to methanol oxidation” Electrochim. Acta 2003, 48, 3891-3897.
    256. Honda, K., Yoshimura, M., Rao, T.N., Tryk, D.A., Fujishima, A., Yasui, K., Sakamoto, Y., Nishio, K., Masuda, H. “Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes” J. Electroanal. Chem. 2001, 514, 35-50.
    257. Wang, J., Swain, G.M., Tachibana, T., Kobashi, K. “Incorporation of Pt particles in boron-doped diamond thin films applications in electrocatalysis” Electrochem. Solid State Lett. 2000, 3, 286-289.

    下載圖示 校內:2010-10-13公開
    校外:2015-10-13公開
    QR CODE