簡易檢索 / 詳目顯示

研究生: 楊昉蓉
Yang, Fang-Jung
論文名稱: 分析參與出血性大腸桿菌寄殖的線蟲突變株
Analyzing the Caenorhabditis elegans mutants confer hypersusceptibility to enterohemorrhagic E. coli colonization
指導教授: 陳昌熙
Chen, Chang-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 80
中文關鍵詞: 秀麗隱桿線蟲出血性大腸桿菌腸道寄殖增加表現型
外文關鍵詞: C. elegans, Enterohaemorrhagic E. coli (EHEC), Intestinal colonization (INC)
相關次數: 點閱:180下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 出血性大腸桿菌為革蘭氏陰性菌,其主要血清型為O157:H7,其會經由食物或水源傳播感染,當病人受到出血性大腸桿菌感染時,可能會導致腹瀉、溶血性尿毒症甚至是腎衰竭等症狀。在之前的研究中,我們發現秀麗隱桿線蟲(Caenorhabditis elegans)會被出血性大腸桿菌感染及毒殺,此外,也發現此致病菌會在線蟲的腸道當中寄殖及複製。過去的許多研究中已經找到了出血性大腸桿菌參與寄殖的主要因子,然而對於參與其中的宿主因子仍是值得被研究的部分。在我們的研究當中,我們利用甲基磺酸乙酯(EMS)突變劑去篩選對於出血性大腸桿菌寄殖於線蟲所參與的宿主因子。
    經由甲基磺酸乙酯作用後的突變株,我們共篩選出32株突變株具有”腸道寄殖增加”(enhanced intestinal colonization, INC)的表現型,在第二次篩選中,我們餵食這32株突變株帶有綠色螢光(GFP)的出血性大腸桿菌,再次確認其腸道內螢光表現增加的情況。接著,我們測試這些突變株對於出血性大腸桿菌感染是否有不同的感受性,其結果令我們驚訝的是其中四株突變株擁有INC的表現型,卻對於出血性大腸桿菌有較強的抵抗能力,這個現象違背我們對於細菌感染的現有知識,因此,我們利用傳統遺傳學方法及單核苷酸多態性分析方法(SNP mapping)分析這四株突變株,經由初步結果,品種YQ087的突變區位在染色體V上,其他三株突變株YQ032、YQ139、YQ106的突變區皆位在染色體I上,且其突變範圍位在基因位置-6到+5之間。我們相信藉由瞭解參與出血性大腸桿菌感染宿主時所需的宿主因子及其功能,可為線蟲抵禦出血性大腸桿菌感染之研究帶來新的曙光。

    Enterohemorrhagic E. coli (EHEC), the major serotype is O157:H7, is a gram-negative rod-shaped bacterium that causes illness through water and food. Patients infected by EHEC may lead to hemorrhagic diarrhea and hemolytic uremic syndrome. In our previous study, we found that E. coli O157:H7 strain EDL933 infected and killed C. elegans animals. Moreover, EHEC colonizes and replicates in the intestinal lumen of C. elegans. Several published literatures have identified the key bacterial factors required for E. coli O157:H7 colonization, however the host factors involved in EHEC colonization remain understudied. Here, we applied the EMS-mediated forward genetic screen for identifying the host factors involved in EHEC colonization in C. elegans.
    We have isolated 32 EMS (Ethyl methanesulfonate)-induced mutants conferred the INC (enhanced intestinal colonization) phenotype. The INC phenotype of these mutants was reconfirmed by a secondary screen fed with the GFP-labeled EHEC. We then examined whether these mutants exhibit different host susceptibility to EHEC infection. To our surprise, four mutants with the INC phenotype exhibited a significant EHEC resistant phenotype compared to the wild-type N2 animals. Given that the mutation alleles in these four mutants enhance the EHEC intestinal colonization yet confer resistance to EHEC infection, this phenomenon is contradictory to our current knowledge about bacterial infection. We therefore turned our attentions to identify the identities of these alleles by conventional two-point mapping and SNP (single-nucleotide polymorphism) mapping. The preliminary results showed the mutation locus of one strain YQ087 is located on chromosome V, and the other three strains YQ139, YQ032 and YQ106 are located on chromosome I, ranging between genetic location -6 to +5. We believe through our study on the function of the host factors required for EHEC colonization and infection may gain insights on the novel aspects of immunity in EHEC infection.

    Contents 中文摘要 1 Abstract 2 誌謝 4 Introduction 8 Material and Methods 11 Bacterial and Nematode Strains 11 E. coli O157:H7 Killing Assays 11 Two generation RNA interference (RNAi) 12 Colony Forming Units (CFU) 13 Assays for general physiology: 14 A. Pumping rate 14 B. Developmental time 14 C. Body length analysis assay 14 D. Brood size analysis assay 14 Bacterial killing assays: 15 A. The Salmonella Typhimurium LT2 Killing Assay 15 B. The Pseudomonas aeruginosa PA14 Killing Assay 15 C. The Staphylococcus aureus 29213 Killing Assay 16 D. The Cry5B (pore forming toxin) Killing Assay 16 General Stressors Analyses: 17 A. CuSO4 assay 17 B. H2O2 assay 17 C. Osmolarity assay 18 Genetic analyses: 18 A. Dominant or recessive analysis 18 B. Complementation 19 C. Chromosome mapping 19 Results 22 The INC phenotype alleles 22 YQ032, YQ087, YQ139 and YQ106 strains also exhibited an EHEC resistant phenotype 22 EHEC colonization is increased in the four mutants 23 General physiology of the YQ032, YQ139, YQ087 and YQ106 strains 24 The susceptibility to other pathogenic bacteria and general stresses 26 Genetic analyses of the four mutant alleles in these mutants 28 Chromosome mapping of four alleles 30 Identification of the mutation gene using RNAi phenocopy and fosmid microinjection rescue 35 Conclusions and Discussion 37 Reference 40 Table 45 Table 1. Bacterial and nematode strains and plasmids used for this study 45 Table 2. Test four mutant alleles are dominant or recessive. 47 Table 3. Complementation data of four mutant alleles 47 Table 4. Mapping data of YQ139 47 Table 5. Mapping data of YQ139 which crossed with marker strain in chromosome I 48 Table 6. Mapping data of YQ087 48 Table 7. Candidate genes in the mapping region -6 to +5 49 Figures 51 Fig. 1 The INC phenotype of 32 mutants. 51 Fig. 2 YQ032, YQ087, YQ139 and YQ106 strains also exhibited an EHEC resistant phenotype. 52 Fig. 3 EDL933 colonization is increased in the four mutants. 55 Fig. 4 General physiology of the YQ032, YQ139, YQ087 and YQ106 strains. 56 Fig. 5 The susceptibility to other pathogenic bacteria. 59 Fig. 6 Four mutants were resistant specifically to bacterial infection. 64 Fig. 7 The methods to distinguish the mutations of these alleles are dominant or recessive and the procedure of complementation. 66 Fig. 8 Through the conventional two-factor mapping, we predicted the mutation location of inc-1(wf132) (YQ139) was in between genetic positions -4.29 to 3.57. 68 Fig. 9 SNP mapping of inc-1(wf132) (YQ139). 69 Fig. 10 SNP mapping of inc-1(wf132) (YQ269). 72 Fig. 11 Chromosome mapping of inc-2(wf091) (YQ087). 76 Fig. 12 Chromosome mapping of inc-1(wf059) (YQ032) and inc-1(wf101) (YQ106). 78

    1 Brenner, S. NATURE’S GIFT TO SCIENCE. (2002).
    2 Brenner, S. THE GENETICS OF CAENORHABDZTZS ELEGANS. Genetlcs 77 71-94 (1974).
    3 Brenner, S. In the Beginning Was the Worm . . . Genetics 182, 413–415 (2009).
    4 Ausubel, M.-W. T. a. F. M. Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. 29-34 (2000).
    5 Tan, M. W. & Ausubel, F. M. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. Vol. 96, 2408-2413 (1999).
    6 Darby, C. Interactions with microbial pathogens. WormBook : the online review of C. elegans biology (2005).
    7 Byron J. Adamsa, A. F., Heather S. Koppenhöferd, Erko Stackebrandte, S. Patricia Stockf, Michael G. Kleinc. Biodiversity and systematics of nematode–bacterium entomopathogens. Biological Control 37, 32-49 (2006).
    8 Nicholas R.Waterfield, B. W. W. a. R. H. f.-C. Invertebrates as a source of emerging human pathogens. 2, 833-841 (2004).
    9 Hilbi, H., Weber, S. S., Ragaz, C., Nyfeler, Y. & Urwyler, S. Environmental predators as models for bacterial pathogenesis. Environmental microbiology 9, 563-575 (2007).
    10 Irazoqui, J. E., Urbach, J. M. & Ausubel, F. M. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nature reviews. Immunology 10, 47-58 (2010).
    11 Pennington, H. Escherichia coli O157. The Lancet 376, 1428-1435 (2010).
    12 Mohawk, K. L. & O'Brien, A. D. Mouse models of Escherichia coli O157:H7 infection and shiga toxin injection. Journal of biomedicine & biotechnology 2011 (2011).
    13 Michael S. Donnenberg, S. T., I Manan L. McKee,I Alison D. O'Brien,I Joseph Alroy,' and James B. Kapert. The Role of the eae Gene of Enterohemorrhagic Escherichia coli in Intimate Attachment In Vitro and in a Porcine Model. J Clin Invest 92, 1418-1424 (1993).
    14 Aruna Panda, Ivan Tatarov, Angela R Melton-Celsa, Krishnan Kolappaswamy, Edwin H Kriel, Daniel Petkov, & Turhan Coksaygan, S. L., Charles G McLeod, James P Nataro, Alison D O' Brien, and Louis J DeTolla. Escherichia coli O157:H7 Infection in Dutch Belted and New Zealand White Rabbits. Comp Med 60, 31-37 (2010).
    15 Golan, L., Gonen, E., Yagel, S., Rosenshine, I. & Shpigel, N. Y. Enterohemorrhagic Escherichia coli induce attaching and effacing lesions and hemorrhagic colitis in human and bovine intestinal xenograft models. Disease models & mechanisms 4, 86-94 (2011).
    16 Chase-Topping, M., Gally, D., Low, C., Matthews, L. & Woolhouse, M. Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nature reviews. Microbiology 6, 904-912 (2008).
    17 Renter, D. G., Sargeant, J. M., Oberst, R. D. & Samadpour, M. Diversity, Frequency, and Persistence of Escherichia coli O157 Strains from Range Cattle Environments. Applied and Environmental Microbiology 69, 542-547 (2003).
    18 Anderson, G. L., Kenney, S. J., Millner, P. D., Beuchat, L. R. & Williams, P. L. Shedding of foodborne pathogens by Caenorhabditis elegans in compost-amended and unamended soil. Food microbiology 23, 146-153 (2006).
    19 Kenney, S. J., Anderson, G. L., Williams, P. L., Millner, P. D. & Beuchat, L. R. Persistence of Escherichia coli O157:H7, Salmonella Newport, and Salmonella Poona in the gut of a free-living nematode, Caenorhabditis elegans, and transmission to progeny and uninfected nematodes. International journal of food microbiology 101, 227-236 (2005).
    20 Anyanful, A. et al. Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene. Molecular microbiology 57, 988-1007 (2005).
    21 Lee, Y. et al. The role of disulfide bond isomerase A (DsbA) of Escherichia coli O157:H7 in biofilm formation and virulence. FEMS microbiology letters 278, 213-222 (2008).
    22 Farfan, M. J. & Torres, A. G. Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infection and immunity 80, 903-913, (2012).
    23 Chou, T. C. et al. Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cellular microbiology 15, 82-97 (2013).
    24 Naylor, S. W. et al. Escherichia coli O157 : H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiology 151, 2773-2781 (2005).
    25 Tobe, T. Cytoskeleton-modulating effectors of enteropathogenic and enterohemorrhagic Escherichia coli: role of EspL2 in adherence and an alternative pathway for modulating cytoskeleton through Annexin A2 function. The FEBS journal 277, 2403-2408 (2010).
    26 Hamada, D., Hamaguchi, M., Suzuki, K. N., Sakata, I. & Yanagihara, I. Cytoskeleton-modulating effectors of enteropathogenic and enterohemorrhagic Escherichia coli: a case for EspB as an intrinsically less-ordered effector. The FEBS journal 277, 2409-2415 (2010).
    27 Campellone, K. G. Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly. The FEBS journal 277, 2390-2402 (2010).
    28 Campellone, K. Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Current Opinion in Microbiology 6, 82-90 (2003).
    29 Strockbine, N. A. et al. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun 53, 135-140 (1986).
    30 Perna, N. T. et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529-533 (2001).
    31 Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).
    32 Chen, C. S. et al. WWP-1 Is a Novel Modulator of the DAF-2 Insulin-Like Signaling Network Involved in Pore-Forming Toxin Cellular Defenses in Caenorhabditis elegans. PLoS One 5, (2010).
    33 Bellier, A., Chen, C. S., Kao, C. Y., Cinar, H. N. & Aroian, R. V. Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans. PLoS pathogens 5 (2009).
    34 Larry J. Bischof, Danielle L. Huffman & Aroian, a. R. V. Assays for Toxicity Studies in C. elegans With Bt Crystal Proteins. Methods in Molecular Biology 351, 139-154 (2006).
    35 Kroetz, S. M., Srinivasan, J., Yaghoobian, J., Sternberg, P. W. & Hong, R. L. The cGMP signaling pathway affects feeding behavior in the necromenic nematode Pristionchus pacificus. PloS one 7 (2012).
    36 Tan MW, R. L., Sternberg JA, Tompkins RG, Ausubel FM. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P.aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA Vol. 96, 2408–2413 (1999).
    37 Larry J. Bischof, D. L. H., and Raffi V. Aroian. Assays for Toxicity Studies in C. elegans With Bt Crystal Proteins. Methods in Molecular Biology vol. 351 (2006).
    38 Wei, J. Z. et al. Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the United States of America 100, 2760-2765 (2003).
    39 Bischof, L. J. et al. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS pathogens 4 (2008).
    40 S. Todd Lamitina, Rebecca Morrison, Gilbert W. Moeckel, and Kevin Strange. Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress.
    41 Mark Edgley1, J. K. L., Don Riddle1, Andy Fire2. Wild-Type Chromosomes Carrying GFP Markers. Worm Breeder's Gazette 15(5): 20 (1999).
    42 Lisa D. Marroquin, * Dino Elyassnia,1,* Joel S. Griffitts,* Jerald S. Feitelson† and Raffi V. Aroian*. Bacillus thuringiensis (Bt) Toxin Susceptibility and Isolation of Resistance Mutants in the Nematode Caenorhabditis elegans. Genetics 155: 1693–1699 (2000).
    43 Davis, M. W. et al. Rapid single nucleotide polymorphism mapping in C. elegans. BMC genomics 6 (2005).
    44 Kuo, C.-J. A forward genetic screen for host factors involved in enterohemorrhagic E. coli colonization in Caenorhabditis elegans. (2012).
    45 Alejandro Aballay, Peter Yorgey & Ausubel, F. M. Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Current Biology 10, 1539–1542 (2000).
    46 Garsin, D. A. et al. A simple model host for identifying Gram-positive virulence factors. Proceedings of the National Academy of Sciences of the United States of America 98, 10892-10897 (2001).
    47 Styer, K. L. et al. Yersinia pestis kills Caenorhabditis elegans by a biofilm-independent process that involves novel virulence factors. EMBO reports 6, 992-997 (2005).
    48 Laura E. Fuhrman, Kevin V. Shianna & Aballay, A. High-Throughput Isolation and Mapping of C. elegans Mutants Susceptible to Pathogen Infection. PloS one 3, (2008).
    49 Valdivia, R. H. & Falkow, S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22, 367-378 (1996).
    50 Avery, L. Food transport in the C. elegans pharynx. Journal of Experimental Biology 206, 2441-2457 (2003).
    51 Hautekeete, N. C., Y. Piquot and H. Van Dijk. Investment insurvival and reproduction along a semelparity-iteroparity gradient in the Beta species complex. J . EVOL. B IOL. 14, 795±804 (2001).
    52 Kevin Fowler, L. P. A cost of mating in female fruitflies. Nature 338, 760-761 (1989).
    53 Kirkwood, R. G. J. W. T. B. L. Humanlongevity at the cost of reproductive success. Nature 396, 743-746 (1998).
    54 McKean, K. A. & Nunney, L. Increased sexual activity reduces male immune function in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 98, 7904-7909(2001).
    55 Miyata, S., Begun, J., Troemel, E. R. & Ausubel, F. M. DAF-16-dependent suppression of immunity during reproduction in Caenorhabditis elegans. Genetics 178, 903-918 (2008).
    56 Yook, K. Complementation. The C. elegans Research Community, WormBook wormbook.1.24.1 (October 06, 2005).
    57 David S. Fay, D. S., Andy Spencer, and Wade Johnson. Worm Breeding for Super Geniuses: A guide to genetic mapping in C. elegans.
    58 Wicks, S. R., Yeh, R. T., Gish, W. R., Waterston, R. H. & Plasterk, R. H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nature genetics 28 (2001).
    59 Shendure, J. & Ji, H. Next-generation DNA sequencing. Nature biotechnology 26, 1135-1145 (2008).
    60 Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. Nature reviews. Genetics 13, 565-575 (2012).
    61 Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nature reviews. Genetics 11, 685-696, (2010).
    62 Zuryn, S. & Jarriault, S. Deep sequencing strategies for mapping and identifying mutations from genetic screens. Worm 2, e25081 (2013).
    63 Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).
    64 Sato, K. et al. Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Mol Biol Cell 22, 2579-2587 (2011).

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE