| 研究生: |
張尚仁 Chang, Shang-Ren |
|---|---|
| 論文名稱: |
台灣白花蝴蝶蘭與蘭嶼姬蝴蝶蘭的四個連鎖群的比較性螢光原位雜合圖譜 Comparative FISH mapping of 4 linkage groups between Phalaenopsis aphrodite and Phalaenopsis equestris. |
| 指導教授: |
張松彬
Chang, Song-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 台灣白花蝴蝶蘭 、蘭嶼姬蝴蝶蘭 、連鎖群 、粗絲期染色體 、比較性螢光原位雜合圖譜 、共線性 |
| 外文關鍵詞: | P. aphrodite, P. equestris, linkage group, pachytene, comparative FISH mapping, collinearity |
| 相關次數: | 點閱:134 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在被子植物中,蘭科(Orchidaceae)為最大的分類群集,目前已有超過28000個物種。蝴蝶蘭(Phalaenopsis)由於其獨特的外型及多變的顏色,使其成為蘭科中最受歡迎的一群。在台灣,有兩種原生蝴蝶蘭,分別為台灣白花蝴蝶蘭(P. aphrodite)及蘭嶼姬蝴蝶蘭(P. equestris)。由於這兩種蝴蝶蘭皆為蘭花育種中重要的親本植物,因此這兩個物種的研究對於蘭花育種而言是相當重要的。而在育種的發展上,細胞遺傳學的研究能夠提供許多必要且實用的資訊,因此進行細胞遺傳學的研究將能幫助育種的進行。本研究挑選了四個台灣白花蝴蝶蘭的連鎖群(linkage group),透過建立比較性螢光原位雜合圖譜(comparative FISH mapping)的方式分析這四個連鎖群在蘭嶼姬蝴蝶蘭粗絲期(pachytene)染色體上的位置。根據研究結果發現這四個連鎖群皆具有高保留度,且在此兩物種相對應的染色體上皆具有共線性(collinearity)。此外也發現在一些染色體上具有染色體重組(rearrangement)的現象。總結本研究的結果確定了這四個連鎖群在蘭嶼姬蝴蝶蘭單一染色體上的位置,使蘭嶼姬蝴蝶蘭各別染色體的辨識更加容易。此外,這些結果也將對未來進行系統化育種的發展以及蘭花演化的研究帶來更多幫助。
With more than 28000 species, Orchidaceae is the biggest family in angiosperms. Phalaenopsis becomes one of the most popular groups of orchids because of their various morphology and colors. In Taiwan, there are two native Phalaenopsis species, P. aphrodite and P. equestris. Both of them are served as important parents in orchid breeding programs. Therefore, understanding and revealing the genetic information of the two species by cytogenetic analysis will be beneficial to orchid breeding. Here, we selected four linkage groups of P. aphrodite and systematically identify their positions on pachytene chromosomes of P. equestris by comparative fluorescence in situ hybridization (FISH) mapping. Our results showed that the four linkage groups are conserved and there is collinearity between some chromosomes of P. aphrodite and their corresponding chromosomes in P. equestris. We also identified chromosomal rearrangements between the two species. Overall, our results revealed the precise positions of the four linkage groups on a single chromosome in P. equestris which will facilitate the identification of each chromosome. The results gained in this study will contribute to systematic orchid breeding and enhance the understanding of orchid evolution.
楊玉婷(2010)。全球蘭花發展現況與未來展望兼論我國蝴蝶蘭與文心蘭發展策略。臺灣經濟研究月刊,第33卷(第3期),頁 36-41。 doi: 10.29656/term.201003.0006
郭東穎(2011)。台灣蝴蝶蘭產業在全球市場之定位與競爭策略分析。臺灣大學農業經濟學研究所學位論文。
薛豪彥(2012)。蘭嶼姬蝴蝶蘭粗絲期染色體螢光原位雜交與核型分析。臺灣大學農藝學研究所學位論文。
蔡雅閔(2016)。台灣白花蝴蝶蘭的第一與第十七遺傳連鎖群在蘭嶼姬蝴蝶蘭染色體上的共線性。成功大學生命科學系研究所學位論文。
Busch W., Martin R., Herrmann R.G. 1994. Sensitivity enhancement of fluorescence in situ hybridization on plant chromosomes. Chromosome Research 2: 15-20.
Cabral J.S., Felix L.P., Guerra M. 2006. Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae) Genetics and Molecular Biology 29: 659-664.
Cai J., Liu X., Vanneste K., Proost S., Tsai W.C., Liu K.W., Chen L.J., He Y., Xu Q., Bian C. et al. 2015. The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics 47: 65-72.
Castillo-Pérez L., Martínez-Soto D., J. Maldonado-Miranda J., Alonso-Castro A., Carranza Alvarez C. 2018. The endemic orchids of Mexico: a review. Biologia 74: 1-13.
Chao Y.T., Chen W.C., Chen C.Y., Ho H.Y., Yeh C.H., Kuo Y.T., Su C.L., Yen S.H., Hsueh H.Y., Yeh J.H. et al. 2018. Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnology Journal 16: 2027-2041.
Cheng Z., Presting G.G., Buell C.R., Wing R.A., Jiang J. 2001. High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157: 1749-1757.
Christenhusz M., Byng J. 2016. The number of known plant species in the world and its annual increase. In Phytotaxa, Vol 261, pp. 201-217.
Christenson E.A. 2001a. Ecology and Distribution. In Phalaenopsis: A Monograph, pp. 19-25. Timber Press, Portland, Oregon.
Christenson E.A. 2001b. Subgenus Phalaenopsis. In Phalaenopsis: A Monograph, pp. 183-248. Timber Press, Portland, Oregon.
D’emerico S., Galasso I., Pignone D., Scrugli A. 2001. Localization of rDNA loci by Fluorescent In Situ Hybridization in some wild orchids from Italy (Orchidaceae). Caryologia 54: 31-36.
Dillon N. 2004. Heterochromatin structure and function. Biology of the Cell 96: 631-637.
Dorer D.R., Henikoff S. 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77: 993-1002.
Ebert A., Schotta G., Lein S., Kubicek S., Krauss V., Jenuwein T., Reuter G. 2004. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes & Development 18: 2973-2983.
Fabiane R C., Pereira T.N.S., Hodnett G.L., Pereira M.G., Stelly D.M. 2008. Fluorescent in situ hybridization of 18S and 5S rDNA in papaya (Carica papaya l.) and wild relatives. Caryologia 61: 411-416.
Faria R., Navarro A. 2010. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends in Ecology & Evolution 25: 660-669.
Figueroa D.M., Bass H.W. 2010. A historical and modern perspective on plant cytogenetics. Briefings in Functional Genomics 9: 95-102.
Fransz P., Armstrong S., Alonso-blanco C., Fischer T.C., Torres-ruiz R.A., Jones G. 1998. Cytogenetics for the model system Arabidopsis thaliana. The Plant Journal 13: 867-876.
Fukui K., Ohmido N., Khush G.S. 1994. Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theoretical and Applied Genetics 87: 893-899.
Gall J.G., Pardue M.L. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences of the United States of America 63: 378-383.
Griffor M.C., Vodkin L.O., Singh R.J., Hymowitz T. 1991. Fluorescent in situ hybridization to soybean metaphase chromosomes. Plant Molecular Biology 17: 101-109.
Hans de Jong J., Fransz P., Zabel P. 1999. High resolution FISH in plants – techniques and applications. Trends in Plant Science 4: 258-263.
Heslop-Harrison J.S. 1991. The Molecular Cytogenetics of Plants. Journal of Cell Science 100: 15-21.
Hsu C.-C., Chen H.-H., Chen W.-H. 2018. Phalaenopsis. In Ornamental Crops, doi:10.1007/978-3-319-90698-0_23 (ed. J. Van Huylenbroeck), pp. 567-625. Springer International Publishing, Cham.
Iovene M., Wielgus S.M., Simon P.W., Buell C.R., Jiang J. 2008. Chromatin Structure and Physical Mapping of Chromosome 6 of Potato and Comparative Analyses With Tomato. Genetics 180: 1307-1317.
Islam-Faridi M.N., Childs K.L., Klein P.E., Hodnett G., Menz M.A., Klein R.R., Rooney W.L., Mullet J.E., Stelly D.M., Price H.J. 2002. A molecular cytogenetic map of sorghum chromosome 1. Fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161: 345-353.
Jackson S.A., Cheng Z., Wang M.L., Goodman H.M., Jiang J. 2000. Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156: 833-838.
Jiang J., Gill B.S., Wang G.L., Ronald P.C., Ward D.C. 1995. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proceedings of the National Academy of Sciences of the United States of America 92: 4487-4491.
Jiang J., Hulbert S.H., Gill B.S., Ward D.C. 1996. Interphase fluorescence in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes. Molecular and General Genetics 252: 497-502.
Jiang J., Gill B.S. 2006. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49: 1057-1068.
Kao Y.Y., Chang S.B., Lin T.Y., Hsieh C.H., Chen Y.H., Chen W.H., Chen C.C. 2001. Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Annals of botany 87: 387-395.
Kim J.S., Islam-Faridi M.N., Klein P.E., Stelly D.M., Price H.J., Klein R.R., Mullet J.E. 2005. Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171: 1963-1976.
Kirkpatrick M., Barton N. 2006. Chromosome Inversions, Local Adaptation and Speciation. Genetics 173: 419-434.
Kirkpatrick M. 2010. How and Why Chromosome Inversions Evolve. PLOS Biology 8: e1000501.
Kirov I.V., Van Laere K., Khrustaleva L.I. 2015. High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa. BMC Genetics 16: 74-83.
Kulikova O., Gualtieri G., Geurts R., Kim D.-J., Cook D., Huguet T., De Jong J.H., Fransz P.F., Bisseling T. 2001. Integration of the FISH pachytene and genetic maps of Medicago truncatula. The Plant Journal 27: 49-58.
Kuo Y.T., Hsu H.L., Yeh C.H., Chang S.B. 2016. Application of a modified drop method for high-resolution pachytene chromosome spreads in two Phalaenopsis species. Molecular Cytogenetics 9: 44-52.
Las Peñas M.L., Urdampilleta J.D., Bernardello G., Forni-Martins E.R. 2009. Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae. Cytogenetic and Genome Research 124: 72-80.
Levan A., Fredga K., Sandberg A.A. 1964. NOMENCLATURE FOR CENTROMERIC POSITION ON CHROMOSOMES. Hereditas 52: 201-220.
Lowry D.B., Willis J.H. 2010. A Widespread Chromosomal Inversion Polymorphism Contributes to a Major Life-History Transition, Local Adaptation, and Reproductive Isolation. PLOS Biology 8: e1000500.
Lysak M.A., Berr A., Pecinka A., Schmidt R., McBreen K., Schubert I. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences of the United States of America 103: 5224-5229.
Murata M., Motoyoshi F. 1995. Floral chromosomes of Arabidopsis thaliana for detecting low-copy DNA sequences by fluorescence in situ hybridization. Chromosoma 104: 39-43.
Murata M., Heslop-Harrison J.S., Motoyoshi F. 1997. Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. The Plant Journal 12: 31-37.
Noor M.A.F., Grams K.L., Bertucci L.A., Reiland J. 2001. Chromosomal inversions and the reproductive isolation of species. Proceedings of the National Academy of Sciences of the United States of America 98: 12084-12088.
Perry C.M.B., Schrader O. 2004. Karyotype analysis of Placea amoena Phil. (Amaryllidaceae) by double fluorescence in situ hybridization. Caryologia 57: 200-205.
Ren Y., Zhang Z., Liu J., Staub J.E., Han Y., Cheng Z., Li X., Lu J., Miao H., Kang H. et al. 2009. An Integrated Genetic and Cytogenetic Map of the Cucumber Genome. PLOS ONE 4: e5795.
Schwarzacher T., Heslop-Harrison P. 2000a. Washing and detection of DNA in situ hybridization to nuclei and chromosomes. In Practical in situ Hybridization, (ed. F. Kingston), pp. 112-125. BIOS Scientific Publishers, UK.
Schwarzacher T., Heslop-Harrison P. 2000b. The in situ hybridization experiment. In Practical in situ Hybridization, (ed. F. Kingston), pp. 1-11. BIOS Scientific Publishers, UK.
Schwarzacher T., Heslop-Harrison P. DNA:DNA in situ hybridization. In Practical in situ Hybridization, (ed. F. Kingston), pp. 96-111. BIOS Scientific Publishers, UK.
Shearer L.A., Anderson L.K., de Jong H., Smit S., Goicoechea J.L., Roe B.A., Hua A., Giovannoni J.J., Stack S.M. 2014. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3 (Bethesda, Md) 4: 1395-1405.
Shindo K., Kamemoto H. 1963. Karyotype Analysis of Some Species of Phalaenopsis. CYTOLOGIA 28: 390-398.
Stace C. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49: 451-477.
Szinay D., Wijnker E., van den Berg R., Visser R.G.F., de Jong H., Bai Y. 2012. Chromosome evolution in Solanum traced by cross-species BAC-FISH. New Phytologist 195: 688-698.
Tanksley S.D., Ganal M.W., Prince J.P., de Vicente M.C., Bonierbale M.W., Broun P., Fulton T.M., Giovannoni J.J., Grandillo S., Martin G.B. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141-1160.
Trask B.J. 1991. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends in Genetics 7: 149-154.
Wai C., Moore P., Paull R., Ming R., Yu Q. 2012. An integrated cytogenetic and physical map reveals unevenly distributed recombination spots along the papaya sex chromosomes. Chromosome Research 20: 753-767.
Walling J.G., Shoemaker R., Young N., Mudge J., Jackson S. 2006. Chromosome-Level Homeology in Paleopolyploid Soybean (Glycine max) Revealed Through Integration of Genetic and Chromosome Maps. Genetics 172: 1893-1900.
Wang C.-J.R., Harper L., Cande W.Z. 2006. High-Resolution Single-Copy Gene Fluorescence in Situ Hybridization and Its Use in the Construction of a Cytogenetic Map of Maize Chromosome 9. The Plant Cell 18: 529-544.
Widmer A., Lexer C., Cozzolino S. 2008. Evolution of reproductive isolation in plants. Heredity 102: 31-38.
Wu F., Tanksley S.D. 2010. Chromosomal evolution in the plant family Solanaceae. BMC Genomics 11: 182-192.