簡易檢索 / 詳目顯示

研究生: 李心佑
Lee, Hsin-Yu
論文名稱: 從實驗室到課堂:利用深度學習與電腦視覺實現即時介入與適應性學習的創新方法於STEM教育
From Laboratory to Classroom: An Innovative Approach Using Deep Learning and Computer Vision for Timely Interventions and Adaptive Learning in STEM Education
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 142
中文關鍵詞: STEM教育中的評估方法深度學習電腦視覺認知發展情感發展
外文關鍵詞: Assessment method in STEM education, Deep learning, Computer vision, Cognitive development, Affective development
ORCID: 0000-0003-3257-305X
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科學、科技、工程及數學(STEM)教育在培養學生透過跨學科整合的解決問題能力上扮演著關鍵角色,這是21世紀學習者被視為重要的能力。然而,STEM教育向學生為中心學習模式的轉移展現出傳統評估方法,如自我報告和觀察法的劣勢。上述的方法往往存在著偏差,且需要大量的人力時間成本來收集數據,未能準確地辨識出解決問題和跨學科整合的複雜性。儘管深度學習和電腦視覺技術的進步有望提供應對這些挑戰的解決方案,但現有的研究大多集中實驗導向研究工具的開發,而不是作為能夠應對實際STEM教學場域的解決方案。為解決上述的研究限制,本研究開發了CV-STEM,一種基於人工智慧的創新評估工具,其利用先進的深度學習和電腦視覺技術,包括You Only Look Once v4 (YOLOv4) 物體偵測,透過客觀且自動化分析學習者手部與STEM學習材料的互動來即時評估參與度。此外,本研究更額外探索了CV-STEM的兩個擴展應用對學生的幫助,即CV-STEM-TI(及時干預)和CV-STEM-AL(適應性學習)。CV-STEM-TI旨在為教育工作者提供學生學習狀態的即時觀察,使得即時的干預、反饋和指導成為可能。另一方面,CV-STEM-AL則是旨在根據個別學生的需求、偏好和能力來調整內容和進度,從而促進適應性和個性化學習。本研究採用了廣泛的評估框架來評估CV-STEM及其擴展在測量學生參與度的準確性、可靠性和有效性,以及它們在提高教學效率和學生學習成果方面的有效性。結果表明,整合CV-STEM及其擴展應用可以顯著革新傳統評估方法,創建一個動態、互動和以學生為中心的學習環境,支持融合和基於探究的STEM教育的新典範。儘管這些發現令人鼓舞,但研究也承認限制,包括樣本大小、涵蓋STEM領域範圍有限和缺乏長期數據。未來研究的方向可以再進一步開發和全面評估CV-STEM及其擴展,旨在概括它們在不同STEM教育情境中的適用性。

    Science, Technology, Engineering, and Mathematics (STEM) education is pivotal in cultivating problem-solving skills among students through interdisciplinary integration, a competency deemed vital for learners in the 21st century. However, the shift towards a student-centered learning paradigm in STEM education has exposed the shortcomings of traditional assessment methods, such as self-reporting and observation. These methods are often biased and require extensive labor for data collection, failing to accurately capture the complexity of problem-solving and interdisciplinary integration. Although advancements in deep learning and computer vision technologies offer promising solutions to these challenges, much of the existing research has focused on their development as research tools rather than as practical solutions for real-world STEM education settings. In this context, this study introduces CV-STEM, an innovative AI-based assessment tool that utilizes advanced deep learning and computer vision technologies, including You Only Look Once v4 (YOLOv4) object detection, to objectively and automatically assess student engagement in real-time through analysis of hand interactions with STEM learning materials. Furthermore, this research explores two extensions of CV-STEM: CV-STEM-TI (Timely Intervention) and CV-STEM-AL (Adaptive Learning). CV-STEM-TI is designed to provide educators with real-time insights into students' learning conditions, enabling timely interventions, feedback, and guidance. Conversely, CV-STEM-AL aims to tailor content and pacing to meet the needs, preferences, and abilities of individual students, thereby promoting adaptive and personalized learning. An extensive evaluation framework was employed to assess the accuracy, reliability, and validity of CV-STEM and its extensions in measuring student engagement, as well as their effectiveness in enhancing teaching efficiency and student learning outcomes. The results indicate that integrating CV-STEM and its extensions can significantly revolutionize traditional assessment methods, creating a dynamic, interactive, and student-centered learning environment that supports the emerging paradigms of integrated and inquiry-based STEM education. Despite these encouraging findings, the study acknowledges limitations, including a small sample size, a limited range of STEM domains covered, and the absence of longitudinal data. It suggests future directions for further development and comprehensive evaluation of CV-STEM and its extensions, with the aim of generalizing their applicability across diverse STEM education contexts.

    摘要 I Abstract II 致謝 IV Table of Contents VI List of Figures IX List of Tables X 1. Introduction 1 1.1 Background 1 1.2 Evolving Assessment Methods in STEM Education 2 1.3 Research Purpose and Questions 3 2. Related work 7 2.1 STEM education 7 2.1.1 Assessment in STEM education 9 2.1.2 Timely intervention in STEM education 11 2.1.3 Adaptive learning in STEM education 13 2.2 Artificial Intelligence 15 2.2.1 Artificial Intelligence in education 17 2.3 Computer vision 23 3. System design 27 3.1 The design of CV-STEM 27 3.1.1 Data collection 29 3.1.2 ICAP framework 30 3.1.3 The implementation of CV-STEM 32 3.2 The design of CV-STEM-TI 36 3.2.1 The user interface of CV-STEM-TI 40 3.3 The design of CV-STEM-AL 41 4. Methodology 45 4.1 The STEM experimental activity in 2021 45 4.1.1 Participants 45 4.1.2 Experimental procedure 45 4.2 The STEM experimental activity in early 2022 48 4.2.1 Participants 48 4.2.2 Experimental procedure 49 4.3 The STEM experimental activity in late 2022 50 4.3.1 Participants 50 4.3.2 Experimental procedure 51 4.4 Research tools 54 4.4.1 Creative Product Analysis Matrix (CPAM) 54 4.4.2 Cognitive development 56 4.4.3 Affective development 56 5. Results 58 5.1 The performance of CV-STEM 58 5.2 The impact of CV-STEM-TI 61 5.2.1 The impact of CV-STEM-TI on cognitive development 61 5.2.2 The impact of CV-STEM-TI on affective development 62 5.3 The impact of CV-STEM-AL 63 5.3.1 The impact of CV-STEM-AL on cognitive development 63 5.3.2 The impact of CV-STEM-AL on affective development 64 6. Discussion 67 6.1 The impact of CV-STEM on STEM education 67 6.2 The impact of CV-STEM-TI on STEM education 68 6.2.1 The impact of CV-STEM-TI on cognitive development 68 6.2.2 The impact of CV-STEM-TI on affective development 71 6.3 The impact of CV-STEM-AL on STEM education 73 6.3.1 The impact of CV-STEM-AL on cognitive development 73 6.3.2 The impact of CV-STEM-AL on affective development 75 7. Conclusion 78 7.1 Implications 78 7.1.1 Theoretical Implications 78 7.1.2 Practical Implications 80 7.2 Limitations 81 7.3 Future directions 82 References 84 Appendix I 116 Appendix II 119 Appendix III 122 Appendix IV 125 Appendix V 130

    Abichandani, P., Iaboni, C., Lobo, D., & Kelly, T. (2023). Artificial intelligence and computer vision education: Codifying student learning gains and attitudes. Computers and Education: Artificial Intelligence, 5, 100159. https://doi.org/10.1016/j.caeai.2023.100159
    Abouhashem, A., Abdou, R. M., Bhadra, J., Santhosh, M., Ahmad, Z., & Al-Thani, N. J. (2021). A Distinctive Method of Online Interactive Learning in STEM Education. Sustainability, 13(24).
    Afini Normadhi, N. B., Shuib, L., Md Nasir, H. N., Bimba, A., Idris, N., & Balakrishnan, V. (2019). Identification of personal traits in adaptive learning environment: Systematic literature review. Computers & Education, 130, 168-190. https://doi.org/10.1016/j.compedu.2018.11.005
    Aloysius, N., & Geetha, M. (2017, 6-8 April 2017). A review on deep convolutional neural networks. 2017 International Conference on Communication and Signal Processing (ICCSP),
    Andreopoulos, A., & Tsotsos, J. K. (2013). 50 Years of object recognition: Directions forward. Computer Vision and Image Understanding, 117(8), 827-891. https://doi.org/10.1016/j.cviu.2013.04.005
    Apedoe, X. S., Reynolds, B., Ellefson, M. R., & Schunn, C. D. (2008). Bringing Engineering Design into High School Science Classrooms: The Heating/Cooling Unit. Journal of Science Education and Technology, 17(5), 454-465. https://doi.org/10.1007/s10956-008-9114-6
    Attard, C., Berger, N., & Mackenzie, E. (2021). The Positive Influence of Inquiry-Based Learning Teacher Professional Learning and Industry Partnerships on Student Engagement With STEM [Original Research]. Frontiers in Education, 6. https://doi.org/10.3389/feduc.2021.693221
    Ayodele, T. O. (2010). Types of machine learning algorithms. New advances in machine learning, 3, 19-48.
    Baepler, P., & Murdoch, C. J. (2010). Academic analytics and data mining in higher education. International Journal for the Scholarship of Teaching and Learning, 4(2), 1-9.
    Bai, Y. (2022). An Analysis Model of College English Classroom Patterns Using LSTM Neural Networks. Wireless Communications and Mobile Computing, 2022, 6477883. https://doi.org/10.1155/2022/6477883
    Ballou, B., Heitger, D. L., & Stoel, D. (2018). Data-driven decision-making and its impact on accounting undergraduate curriculum. Journal of Accounting Education, 44, 14-24.
    Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191-215. https://doi.org/10.1037/0033-295X.84.2.191
    Bandura, A. (1993). Perceived Self-Efficacy in Cognitive Development and Functioning. Educational Psychologist, 28(2), 117-148. https://doi.org/10.1207/s15326985ep2802_3
    Bandura, A., Freeman, W. H., & Lightsey, R. (1999). Self-Efficacy: The Exercise of Control. J Cogn Psychother(2), 158-166. https://doi.org/10.1891/0889-8391.13.2.158
    Baumeister, R. F., Vohs, K. D., & Tice, D. M. (2007). The Strength Model of Self-Control. Current Directions in Psychological Science, 16(6), 351-355. https://doi.org/10.1111/j.1467-8721.2007.00534.x
    Bayounes, W., Saâdi, I. B., & Kinshuk. (2022). Adaptive learning: toward an intentional model for learning process guidance based on learner’s motivation. Smart Learning Environments, 9(1), 33. https://doi.org/10.1186/s40561-022-00215-9
    Besemer, S. P., & O'Quin, K. (1999). Confirming the Three-Factor Creative Product Analysis Matrix Model in an American Sample. Creativity Research Journal, 12(4), 287-296. https://doi.org/10.1207/s15326934crj1204_6
    Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K., & Ghayvat, H. (2021). CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics, 10(20), 2470. https://www.mdpi.com/2079-9292/10/20/2470
    Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934.
    Bousdekis, A., Lepenioti, K., Apostolou, D., & Mentzas, G. (2021). A Review of Data-Driven Decision-Making Methods for Industry 4.0 Maintenance Applications. Electronics, 10(7).
    Brooks, R., Brooks, S., & Goldstein, S. (2012). The Power of Mindsets: Nurturing Engagement, Motivation, and Resilience in Students. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of Research on Student Engagement (pp. 541-562). Springer US. https://doi.org/10.1007/978-1-4614-2018-7_26
    Brown, R., Brown, J., Reardon, K., & Merrill, C. (2011). Understanding STEM: current perceptions. Technology and Engineering Teacher, 70(6), 5.
    Brynjolfsson, E., Hitt, L. M., & Kim, H. H. (2011). Strength in numbers: How does data-driven decisionmaking affect firm performance? Available at SSRN 1819486.
    Bybee, R. W. (2010). What is STEM education? In (Vol. 329, pp. 996-996): American Association for the Advancement of Science.
    Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities.
    Calvert, J., & Abadia, R. (2020). Impact of immersing university and high school students in educational linear narratives using virtual reality technology. Computers & Education, 159, 104005. https://doi.org/10.1016/j.compedu.2020.104005
    Cavalcanti, A. P., Barbosa, A., Carvalho, R., Freitas, F., Tsai, Y.-S., Gašević, D., & Mello, R. F. (2021). Automatic feedback in online learning environments: A systematic literature review. Computers and Education: Artificial Intelligence, 2, 100027. https://doi.org/10.1016/j.caeai.2021.100027
    Cech, T. G., Spaulding, T. J., & Cazier, J. A. (2018). Data competence maturity: developing data-driven decision making. Journal of Research in Innovative Teaching & Learning.
    Cetin, I., & Ozden, M. Y. (2015). Development of computer programming attitude scale for university students. Computer Applications in Engineering Education, 23(5), 667-672. https://doi.org/10.1002/cae.21639
    Chang, C.-C., & Chen, Y. (2022). Using mastery learning theory to develop task-centered hands-on STEM learning of Arduino-based educational robotics: psychomotor performance and perception by a convergent parallel mixed method. Interactive Learning Environments, 30(9), 1677-1692. https://doi.org/10.1080/10494820.2020.1741400
    Chasani, L. U., Kartono, K., & Kharisudin, I. (2022). The Implementation of Immediate Feedback in Problem-based Learning: The Problem-Solving Skill Analysis Seen from Self-Efficacy. Unnes Journal of Mathematics Education Research, 11(2), 145-150.
    Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: a narrative overview. Procedia Computer Science, 136, 16-24.
    Chen, G., Gully, S. M., & Eden, D. (2001). Validation of a New General Self-Efficacy Scale. Organizational Research Methods, 4(1), 62-83. https://doi.org/10.1177/109442810141004
    Chen, J.-C., Huang, Y., Lin, K.-Y., Chang, Y.-S., Lin, H.-C., Lin, C.-Y., & Hsiao, H.-S. (2020). Developing a hands-on activity using virtual reality to help students learn by doing. Journal of Computer Assisted Learning, 36(1), 46-60. https://doi.org/10.1111/jcal.12389
    Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510
    Chen, X., Xie, H., Zou, D., & Hwang, G.-J. (2020). Application and theory gaps during the rise of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100002. https://doi.org/10.1016/j.caeai.2020.100002
    Cheng, Q., Benton, D., & Quinn, A. (2021, 13-16 Oct. 2021). Building a Motivating and Autonomy Environment to Support Adaptive Learning. 2021 IEEE Frontiers in Education Conference (FIE),
    Chi, M. T. H., & Wylie, R. (2014). The ICAP Framework: Linking Cognitive Engagement to Active Learning Outcomes. Educational Psychologist, 49(4), 219-243. https://doi.org/10.1080/00461520.2014.965823
    Christensen, R., Knezek, G., & Tyler-Wood, T. (2015). Alignment of Hands-on STEM Engagement Activities with Positive STEM Dispositions in Secondary School Students. Journal of Science Education and Technology, 24(6), 898-909. https://doi.org/10.1007/s10956-015-9572-6
    Clark, I. (2012). Formative Assessment: Assessment Is for Self-regulated Learning. Educational Psychology Review, 24(2), 205-249. https://doi.org/10.1007/s10648-011-9191-6
    Congress, U. (2001). No child left behind act of 2001. Public law, 107, 110.
    Council, N. R., Behavioral, D. o., Sciences, S., Testing, B. o., Education, B. o. S., & Education, C. o. H. S. S. o. P. f. K.-S. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. National Academies Press.
    Cyganek, B., & Siebert, J. P. (2011). An introduction to 3D computer vision techniques and algorithms. John Wiley & Sons.
    D'Mello, S., Dieterle, E., & Duckworth, A. (2017). Advanced, Analytic, Automated (AAA) Measurement of Engagement During Learning. Educational Psychologist, 52(2), 104-123. https://doi.org/10.1080/00461520.2017.1281747
    de Jong, T. (2019). Moving towards engaged learning in STEM domains; there is no simple answer, but clearly a road ahead. Journal of Computer Assisted Learning, 35(2), 153-167. https://doi.org/https://doi.org/10.1111/jcal.12337
    Dechter, R. (1986). Learning while searching in constraint-satisfaction problems.
    Deci, E. L., Vallerand, R. J., Pelletier, L. G., & Ryan, R. M. (1991). Motivation and Education: The Self-Determination Perspective. Educational Psychologist, 26(3-4), 325-346. https://doi.org/10.1080/00461520.1991.9653137
    Deeva, G., Bogdanova, D., Serral, E., Snoeck, M., & De Weerdt, J. (2021). A review of automated feedback systems for learners: Classification framework, challenges and opportunities. Computers & Education, 162, 104094. https://doi.org/10.1016/j.compedu.2020.104094
    Dias, S. B., Hadjileontiadou, S. J., Diniz, J. A., & Hadjileontiadis, L. J. (2017). Computer-based concept mapping combined with learning management system use: An explorative study under the self- and collaborative-mode. Computers & Education, 107, 127-146. https://doi.org/10.1016/j.compedu.2017.01.009
    Dieckmann, P., Patterson, M., Lahlou, S., Mesman, J., Nyström, P., & Krage, R. (2017). Variation and adaptation: learning from success in patient safety-oriented simulation training. Advances in Simulation, 2(1), 21. https://doi.org/10.1186/s41077-017-0054-1
    Diwan, C., Srinivasa, S., Suri, G., Agarwal, S., & Ram, P. (2023). AI-based learning content generation and learning pathway augmentation to increase learner engagement. Computers and Education: Artificial Intelligence, 4, 100110. https://doi.org/10.1016/j.caeai.2022.100110
    Duschl, R. A. (2019). Learning progressions: framing and designing coherent sequences for STEM education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 4. https://doi.org/10.1186/s43031-019-0005-x
    Eau, G., Hoodin, D., & Musaddiq, T. (2022). Testing the effects of adaptive learning courseware on student performance: An experimental approach. Southern Economic Journal, 88(3), 1086-1118. https://doi.org/10.1002/soej.12547
    El-Sabagh, H. A. (2021). Adaptive e-learning environment based on learning styles and its impact on development students' engagement. International Journal of Educational Technology in Higher Education, 18(1), 53. https://doi.org/10.1186/s41239-021-00289-4
    Elmaadaway, M. A. N., & Abouelenein, Y. A. M. (2023). In-service teachers' TPACK development through an adaptive e-learning environment (ALE). Education and Information Technologies, 28(7), 8273-8298. https://doi.org/10.1007/s10639-022-11477-8
    English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(1), 3. https://doi.org/10.1186/s40594-016-0036-1
    Farley-Ripple, E., Karpyn, A. E., McDonough, K., & Tilley, K. (2017). Defining how we get from research to practice: A model framework for schools. In Evidence and public good in educational policy, research and practice (pp. 79-95). Springer.
    Felder, R. M., & Brent, R. (2024). Teaching and learning STEM: A practical guide. John Wiley & Sons.
    Feltovich, P. J., Spiro, R. J., & Coulson, R. L. (2012). Learning, teaching, and testing for complex conceptual understanding. In Test theory for a new generation of tests (pp. 181-217). Routledge.
    Fischer, C., Pardos, Z. A., Baker, R. S., Williams, J. J., Smyth, P., Yu, R., Slater, S., Baker, R., & Warschauer, M. (2020). Mining Big Data in Education: Affordances and Challenges. Review of Research in Education, 44(1), 130-160. https://doi.org/10.3102/0091732X20903304
    Fjelland, R. (2020). Why general artificial intelligence will not be realized. Humanities and Social Sciences Communications, 7(1), 1-9.
    Gani, M. O., Ayyasamy, R. K., Sangodiah, A., & Fui, Y. T. (2023). Bloom’s Taxonomy-based exam question classification: The outcome of CNN and optimal pre-trained word embedding technique. Education and Information Technologies, 28(12), 15893-15914. https://doi.org/10.1007/s10639-023-11842-1
    Gao, F., Li, L., & Sun, Y. (2020). A systematic review of mobile game-based learning in STEM education. Educational Technology Research and Development, 68(4), 1791-1827. https://doi.org/10.1007/s11423-020-09787-0
    Gao, X., Li, P., Shen, J., & Sun, H. (2020). Reviewing assessment of student learning in interdisciplinary STEM education. International Journal of STEM Education, 7(1), 24. https://doi.org/10.1186/s40594-020-00225-4
    Gil, P. D., da Cruz Martins, S., Moro, S., & Costa, J. M. (2020). A data-driven approach to predict first-year students’ academic success in higher education institutions. Education and Information Technologies, 1-26.
    Gligorea, I., Cioca, M., Oancea, R., Gorski, A.-T., Gorski, H., & Tudorache, P. (2023). Adaptive Learning Using Artificial Intelligence in e-Learning: A Literature Review. Education Sciences, 13(12), 1216. https://www.mdpi.com/2227-7102/13/12/1216
    Grangeat, M., Harrison, C., & Dolin, J. (2021). Exploring assessment in STEM inquiry learning classrooms. International Journal of Science Education, 43(3), 345-361. https://doi.org/10.1080/09500693.2021.1903617
    Guay, F., Vallerand, R. J., & Blanchard, C. (2000). On the Assessment of Situational Intrinsic and Extrinsic Motivation: The Situational Motivation Scale (SIMS). Motivation and Emotion, 24(3), 175-213. https://doi.org/10.1023/A:1005614228250
    Guzey, S. S., Moore, T. J., Harwell, M., & Moreno, M. (2016). STEM integration in middle school life science: Student learning and attitudes. Journal of Science Education and Technology, 25(4), 550-560. https://doi.org/10.1007/s10956-016-9612-x
    Halevy, A., Norvig, P., & Pereira, F. (2009). The unreasonable effectiveness of data. IEEE Intelligent Systems, 24(2), 8-12.
    Harari, G. M., Müller, S. R., Aung, M. S. H., & Rentfrow, P. J. (2017). Smartphone sensing methods for studying behavior in everyday life. Current Opinion in Behavioral Sciences, 18, 83-90. https://doi.org/10.1016/j.cobeha.2017.07.018
    Hein, G. E. (1991, October 15-22). Constructivist learning theory. In Proceedings of the CECA (International Committee of Museum Educators) Conference, Jerusalem, Israel (pp. 1-10).
    Hofstein, A., & Lunetta, V. N. (1982). The role of the laboratory in science teaching: Neglected aspects of research. Review of educational research, 52(2), 201-217.
    Holmlund, T. D., Lesseig, K., & Slavit, D. (2018). Making sense of “STEM education” in K-12 contexts. International Journal of STEM Education, 5(1), 32. https://doi.org/10.1186/s40594-018-0127-2
    Hooda, M., Rana, C., Dahiya, O., Rizwan, A., & Hossain, M. S. (2022). Artificial Intelligence for Assessment and Feedback to Enhance Student Success in Higher Education. Mathematical Problems in Engineering, 2022, 5215722. https://doi.org/10.1155/2022/5215722
    Hooshyar, D., Malva, L., Yang, Y., Pedaste, M., Wang, M., & Lim, H. (2021). An adaptive educational computer game: Effects on students' knowledge and learning attitude in computational thinking. Computers in Human Behavior, 114, 106575. https://doi.org/10.1016/j.chb.2020.106575
    Horikami, A., & Takahashi, K. (2022). The Tripartite Thinking Model of Creativity. Thinking Skills and Creativity, 44, 101026. https://doi.org/https://doi.org/10.1016/j.tsc.2022.101026
    Hsiao, J.-C., Chen, S.-K., Chen, W., & Lin, S. S. J. (2022). Developing a plugged-in class observation protocol in high-school blended STEM classes: Student engagement, teacher behaviors and student-teacher interaction patterns. Computers & Education, 178, 104403. https://doi.org/10.1016/j.compedu.2021.104403
    Hu, Y.-H. (2022). Effects and acceptance of precision education in an AI-supported smart learning environment. Education and Information Technologies, 27(2), 2013-2037. https://doi.org/10.1007/s10639-021-10664-3
    Huang, B., Siu-Yung Jong, M., Tu, Y.-F., Hwang, G.-J., Chai, C. S., & Yi-Chao Jiang, M. (2022). Trends and exemplary practices of STEM teacher professional development programs in K-12 contexts: A systematic review of empirical studies. Computers & Education, 189, 104577. https://doi.org/10.1016/j.compedu.2022.104577
    Huang, H.-T., & Chang, Y.-S. (2023). Effects of virtual reality on creative performance and emotions: A study of brainwaves. Computers in Human Behavior, 146, 107815. https://doi.org/10.1016/j.chb.2023.107815
    Huang, Y.-M., Wang, W.-S., Lee, H.-Y., Lin, C.-J., & Wu, T.-T. (2024). Empowering virtual reality with feedback and reflection in hands-on learning: Effect of learning engagement and higher-order thinking. Journal of Computer Assisted Learning, n/a(n/a). https://doi.org/10.1111/jcal.12959
    Huber, S. G., & Skedsmo, G. (2016). Editorial: Data Use—a Key to Improve Teaching and Learning? Educational Assessment, Evaluation and Accountability, 28(1), 1-3. https://doi.org/10.1007/s11092-016-9239-8
    Huguet, A., Marsh, J. A., & Farrell, C. C. (2014). Building teachers’ data-use capacity: Insights from strong and developing coaches. Education Policy Analysis Archives/Archivos Analíticos de Políticas Educativas, 22, 1-28.
    Hwang, G.-J., Sung, H.-Y., Chang, S.-C., & Huang, X.-C. (2020). A fuzzy expert system-based adaptive learning approach to improving students’ learning performances by considering affective and cognitive factors. Computers and Education: Artificial Intelligence, 1, 100003. https://doi.org/10.1016/j.caeai.2020.100003
    Hwang, G.-J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100001. https://doi.org/10.1016/j.caeai.2020.100001
    Imbernón Cuadrado, L. E., Manjarrés Riesco, Á., & de la Paz López, F. (2023). Using LSTM to Identify Help Needs in Primary School Scratch Students. Applied Sciences, 13(23), 12869. https://www.mdpi.com/2076-3417/13/23/12869
    Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., & Qu, R. (2019). A Survey of Deep Learning-Based Object Detection. IEEE Access, 7, 128837-128868. https://doi.org/10.1109/ACCESS.2019.2939201
    Jordan, M. I. (2019). Artificial intelligence—the revolution hasn’t happened yet. Harvard Data Science Review, 1(1).
    Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
    Kabudi, T., Pappas, I., & Olsen, D. H. (2021). AI-enabled adaptive learning systems: A systematic mapping of the literature. Computers and Education: Artificial Intelligence, 2, 100017. https://doi.org/10.1016/j.caeai.2021.100017
    Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25.
    Kartowagiran, B., & Manaf, A. (2021). Student Attitude and Mathematics Learning Success: A Meta-Analysis. International Journal of Instruction, 14(4), 209-222.
    Keiler, L. S. (2018). Teachers’ roles and identities in student-centered classrooms. International Journal of STEM Education, 5(1), 34. https://doi.org/10.1186/s40594-018-0131-6
    Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. https://doi.org/10.1186/s40594-016-0046-z
    Kennedy, P. (2013). Engineers of victory: The problem solvers who turned the tide in the Second World War. Penguin UK.
    Kind, V. (2004). Beyond appearances: Students’ misconceptions about basic chemical ideas. In: London: Royal Society of Chemistry.
    Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155-163. https://doi.org/https://doi.org/10.1016/j.jcm.2016.02.012
    Krathwohl, D. R. (2002). A Revision of Bloom's Taxonomy: An Overview. Theory Into Practice, 41(4), 212-218. https://doi.org/10.1207/s15430421tip4104_2
    Kukkar, A., Mohana, R., Sharma, A., & Nayyar, A. (2024). A novel methodology using RNN + LSTM + ML for predicting student’s academic performance. Education and Information Technologies. https://doi.org/10.1007/s10639-023-12394-0
    Kulkarni, P. (2012). Reinforcement and systemic machine learning for decision making (Vol. 1). John Wiley & Sons.
    Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics, 159-174.
    Lasri, I., Riadsolh, A., & Elbelkacemi, M. (2023a). Facial emotion recognition of deaf and hard-of-hearing students for engagement detection using deep learning. Education and Information Technologies, 28(4), 4069-4092. https://doi.org/10.1007/s10639-022-11370-4
    Lasri, I., Riadsolh, A., & ElBelkacemi, M. (2023b). Self-Attention-Based Bi-LSTM Model for Sentiment Analysis on Tweets about Distance Learning in Higher Education. International Journal of Emerging Technologies in Learning (iJET), 18(12), pp. 119-141. https://doi.org/10.3991/ijet.v18i12.38071
    Lathia, N., Pejovic, V., Rachuri, K. K., Mascolo, C., Musolesi, M., & Rentfrow, P. J. (2013). Smartphones for Large-Scale Behavior Change Interventions. IEEE Pervasive Computing, 12(3), 66-73. https://doi.org/10.1109/MPRV.2013.56
    Lee, D., Huh, Y., Lin, C.-Y., Reigeluth, C. M., & Lee, E. (2021). Differences in personalized learning practice and technology use in high- and low-performing learner-centered schools in the United States. Educational Technology Research and Development, 69(2), 1221-1245. https://doi.org/10.1007/s11423-021-09937-y
    Lee, H.-Y., Chang, W.-C., & Huang, Y.-M. (2022, 2022//). Combining Deep Learning and Computer Vision Techniques for Automatic Analysis of the Learning Process in STEM Education. Innovative Technologies and Learning, Cham.
    Lee, H.-Y., Cheng, Y.-P., Wang, W.-S., Lin, C.-J., & Huang, Y.-M. (2023). Exploring the Learning Process and Effectiveness of STEM Education via Learning Behavior Analysis and the Interactive-Constructive- Active-Passive Framework. Journal of Educational Computing Research, 61(5), 951-976. https://doi.org/10.1177/07356331221136888
    Lee, H.-Y., Lin, C.-J., Wang, W.-S., Chang, W.-C., & Huang, Y.-M. (2023). Precision education via timely intervention in K-12 computer programming course to enhance programming skill and affective-domain learning objectives. International Journal of STEM Education, 10(1), 52. https://doi.org/10.1186/s40594-023-00444-5
    Lee, H.-Y., Wu, T.-T., Lin, C.-J., Wang, W.-S., & Huang, Y.-M. (2023). Integrating Computational Thinking Into Scaffolding Learning: An Innovative Approach to Enhance Science, Technology, Engineering, and Mathematics Hands-On Learning. Journal of Educational Computing Research, 62(2), 431-467. https://doi.org/10.1177/07356331231211916
    Lee, Y.-J. (2012). Developing an efficient computational method that estimates the ability of students in a Web-based learning environment. Computers & Education, 58(1), 579-589.
    Li, P.-H., Lee, H.-Y., Cheng, Y.-P., Starčič, A. I., & Huang, Y.-M. (2023). Solving the Self-regulated Learning Problem: Exploring the Performance of ChatGPT in Mathematics. In Y.-M. Huang & T. Rocha, Innovative Technologies and Learning Cham.
    Li, W. (2022). Resilience Among Language Learners: The Roles of Support, Self-Efficacy, and Buoyancy [Curriculum, Instruction, and Pedagogy]. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.854522
    Lim, L., Bannert, M., van der Graaf, J., Singh, S., Fan, Y., Surendrannair, S., Rakovic, M., Molenaar, I., Moore, J., & Gašević, D. (2023). Effects of real-time analytics-based personalized scaffolds on students’ self-regulated learning. Computers in Human Behavior, 139, 107547. https://doi.org/10.1016/j.chb.2022.107547
    Lim, L., Lim, S. H., & Lim, W. Y. R. (2022). A Rasch Analysis of Students’ Academic Motivation toward Mathematics in an Adaptive Learning System. Behavioral Sciences, 12(7), 244. https://www.mdpi.com/2076-328X/12/7/244
    Lin, C.-J., Wang, W.-S., Lee, H.-Y., Huang, Y.-M., & Wu, T.-T. (2023). Recognitions of image and speech to improve learning diagnosis on STEM collaborative activity for precision education. Education and Information Technologies. https://doi.org/10.1007/s10639-023-12426-9
    Lin, H.-C., Tu, Y.-F., Hwang, G.-J., & Huang, H. (2021). From Precision Education to Precision Medicine: Factors Affecting Medical Staffs Intention to Learn to Use AI Applications in Hospitals. Educational Technology & Society, 24(1), 123-137. https://www.jstor.org/stable/26977862
    Lin, K.-Y., Lu, S.-C., Hsiao, H.-H., Kao, C.-P., & Williams, P. J. (2021). Developing student imagination and career interest through a STEM project using 3D printing with repetitive modeling. Interactive Learning Environments, 1-15. https://doi.org/10.1080/10494820.2021.1913607
    Lin, M.-H., & Chen, H.-g. (2017). A study of the effects of digital learning on learning motivation and learning outcome. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3553-3564. https://doi.org/10.12973/eurasia.2017.00744a
    Lin, Y.-S., & Lai, Y.-H. (2021). Analysis of AI Precision Education Strategy for Small Private Online Courses. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.749629
    Ling, H.-C., & Chiang, H.-S. (2022). Learning Performance in Adaptive Learning Systems: A Case Study of Web Programming Learning Recommendations [Brief Research Report]. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.770637
    Liu, J., Liu, F., Fang, J., & Liu, S. (2023). The application of Chat Generative Pre-trained Transformer in nursing education. Nursing Outlook, 71(6), 102064. https://doi.org/10.1016/j.outlook.2023.102064
    Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2020). Deep learning for generic object detection: A survey. International journal of computer vision, 128(2), 261-318.
    Liu, T. C. (2022). A Case Study of the Adaptive Learning Platform in a Taiwanese Elementary School: Precision Education from Teachers’ Perspectives. Education and Information Technologies, 27(5), 6295-6316. https://doi.org/10.1007/s10639-021-10851-2
    Long, Q. (2018). Data-driven decision making for supply chain networks with agent-based computational experiment. Knowledge-Based Systems, 141, 55-66. https://doi.org/10.1016/j.knosys.2017.11.006
    Luan, H., Geczy, P., Lai, H., Gobert, J., Yang, S. J. H., Ogata, H., Baltes, J., Guerra, R., Li, P., & Tsai, C.-C. (2020). Challenges and Future Directions of Big Data and Artificial Intelligence in Education [Review]. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.580820
    Lynch, S. J., Burton, E. P., Behrend, T., House, A., Ford, M., Spillane, N., Matray, S., Han, E., & Means, B. (2018). Understanding inclusive STEM high schools as opportunity structures for underrepresented students: Critical components. Journal of Research in Science Teaching, 55(5), 712-748. https://doi.org/10.1002/tea.21437
    Lyon, D. (1993). An Electronic Panopticon? A Sociological Critique of Surveillance Theory. The Sociological Review, 41(4), 653-678. https://doi.org/10.1111/j.1467-954X.1993.tb00896.x
    Ma, Z., Ren, Y., Xiang, X., & Turk, Z. (2020). Data-driven decision-making for equipment maintenance. Automation in Construction, 112, 103103. https://doi.org/10.1016/j.autcon.2020.103103
    Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The Role of Mathematics in interdisciplinary STEM education. ZDM, 51(6), 869-884. https://doi.org/10.1007/s11858-019-01100-5
    Madden, M. E., Baxter, M., Beauchamp, H., Bouchard, K., Habermas, D., Huff, M., Ladd, B., Pearon, J., & Plague, G. (2013). Rethinking STEM Education: An Interdisciplinary STEAM Curriculum. Procedia Computer Science, 20, 541-546. https://doi.org/10.1016/j.procs.2013.09.316
    Mandinach, E. B. (2012). A Perfect Time for Data Use: Using Data-Driven Decision Making to Inform Practice. Educational Psychologist, 47(2), 71-85. https://doi.org/10.1080/00461520.2012.667064
    Marchisio, M., Barana, A., Fioravera, M., Rabellino, S., & Conte, A. (2018, 23-27 July 2018). A Model of Formative Automatic Assessment and Interactive Feedback for STEM. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC),
    Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6(1), 2. https://doi.org/10.1186/s40594-018-0151-2
    Marshall, P. (2007). Do tangible interfaces enhance learning? Proceedings of the 1st international conference on Tangible and embedded interaction, Baton Rouge, Louisiana. https://doi.org/10.1145/1226969.1227004
    Martin, F., Chen, Y., Moore, R. L., & Westine, C. D. (2020). Systematic review of adaptive learning research designs, context, strategies, and technologies from 2009 to 2018. Educational Technology Research and Development, 68(4), 1903-1929. https://doi.org/10.1007/s11423-020-09793-2
    Martinez, M. (2013). Adapting for a Personalized Learning Experience. In R. Huang, Kinshuk, & J. M. Spector (Eds.), Reshaping Learning: Frontiers of Learning Technology in a Global Context (pp. 139-174). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32301-0_6
    Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822. https://doi.org/10.1002/sce.21522
    Marwan, S., Gao, G., Fisk, S., Price, T. W., & Barnes, T. (2020). Adaptive Immediate Feedback Can Improve Novice Programming Engagement and Intention to Persist in Computer Science Proceedings of the 2020 ACM Conference on International Computing Education Research, Virtual Event, New Zealand. https://doi.org/10.1145/3372782.3406264
    Mathieson, D., Cotrupi, C., Schilling, M., & Grohs, J. (2023). Resiliency through partnerships: Prioritizing STEM workforce pathways amid macro challenges. School Science and Mathematics, 123(3), 137-149. https://doi.org/10.1111/ssm.12575
    Mavroudi, A., Giannakos, M., & Krogstie, J. (2018). Supporting adaptive learning pathways through the use of learning analytics: developments, challenges and future opportunities. Interactive Learning Environments, 26(2), 206-220. https://doi.org/10.1080/10494820.2017.1292531
    McCarthy, J. (1956). The inversion of functions defined by Turing machines. Automata studies, 177-181.
    Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2018). A systematic literature review on teaching and learning introductory programming in higher education. IEEE Transactions on Education, 62(2), 77-90. https://doi.org/10.1109/TE.2018.2864133
    Mejbri, N., Essalmi, F., Jemni, M., & Alyoubi, B. A. (2022). Trends in the use of affective computing in e-learning environments. Education and Information Technologies, 27(3), 3867-3889. https://doi.org/10.1007/s10639-021-10769-9
    Mirata, V., Hirt, F., Bergamin, P., & van der Westhuizen, C. (2020). Challenges and contexts in establishing adaptive learning in higher education: findings from a Delphi study. International Journal of Educational Technology in Higher Education, 17(1), 32. https://doi.org/10.1186/s41239-020-00209-y
    Montani, S., & Striani, M. (2019). Artificial intelligence in clinical decision support: a focused literature survey. Yearbook of medical informatics, 28(1), 120.
    Moon, J., Ke, F., & Sokolikj, Z. (2020). Automatic assessment of cognitive and emotional states in virtual reality-based flexibility training for four adolescents with autism. British Journal of Educational Technology, 51(5), 1766-1784. https://doi.org/https://doi.org/10.1111/bjet.13005
    Moore, G. E. (1975). Progress in digital integrated electronics. Electron devices meeting,
    Morris, R., Perry, T., & Wardle, L. (2021). Formative assessment and feedback for learning in higher education: A systematic review. Review of Education, 9(3), e3292. https://doi.org/10.1002/rev3.3292
    Morrison, J., Frost, J., Gotch, C., McDuffie, A. R., Austin, B., & French, B. (2021). Teachers’ Role in Students’ Learning at a Project-Based STEM High School: Implications for Teacher Education. International Journal of Science and Mathematics Education, 19(6), 1103-1123. https://doi.org/10.1007/s10763-020-10108-3
    Moyo, L., & Hadebe, L. (2018). The role of teacher education in the sustainability of STEM. European Journal of Education Studies. https://doi.org/10.5281/zenodo.1288279
    Mubarak, A. A., Cao, H., & Ahmed, S. A. M. (2021). Predictive learning analytics using deep learning model in MOOCs’ courses videos. Education and Information Technologies, 26(1), 371-392. https://doi.org/10.1007/s10639-020-10273-6
    Mujahid, M., Lee, E., Rustam, F., Washington, P. B., Ullah, S., Reshi, A. A., & Ashraf, I. (2021). Sentiment Analysis and Topic Modeling on Tweets about Online Education during COVID-19. Applied Sciences, 11(18), 8438. https://www.mdpi.com/2076-3417/11/18/8438
    Murphy, S., MacDonald, A., & Danaia, L. (2020). Sustaining STEM: A Framework for Effective STEM Education Across the Learning Continuum. In A. MacDonald, L. Danaia, & S. Murphy (Eds.), STEM Education Across the Learning Continuum: Early Childhood to Senior Secondary (pp. 9-28). Springer Singapore. https://doi.org/10.1007/978-981-15-2821-7_2
    Nassiri, K., & Akhloufi, M. (2023). Transformer models used for text-based question answering systems. Applied Intelligence, 53(9), 10602-10635. https://doi.org/10.1007/s10489-022-04052-8
    Newton, X. A., & Tonelli, E. P. (2020). Building undergraduate STEM majors’ capacity for delivering inquiry-based mathematics and science lessons: An exploratory evaluation study. Studies in Educational Evaluation, 64, 100833. https://doi.org/10.1016/j.stueduc.2019.100833
    Nikula, U., Gotel, O., & Kasurinen, J. (2011). A motivation guided holistic rehabilitation of the first programming course. ACM Transactions on Computing Education (TOCE), 11(4), 1-38. https://doi.org/10.1145/2048931.2048935
    Nunnally, J. C. (1978). An Overview of Psychological Measurement. In B. B. Wolman (Ed.), Clinical Diagnosis of Mental Disorders: A Handbook (pp. 97-146). Springer US. https://doi.org/10.1007/978-1-4684-2490-4_4
    Ott, C., Robins, A., & Shephard, K. (2016). Translating principles of effective feedback for students into the CS1 context. ACM Transactions on Computing Education (TOCE), 16(1), 1-27. https://doi.org/10.1145/2737596
    Ouyang, F., Dinh, T. A., & Xu, W. (2023). A Systematic Review of AI-Driven Educational Assessment in STEM Education. Journal for STEM Education Research, 6(3), 408-426. https://doi.org/10.1007/s41979-023-00112-x
    Ouyang, F., Jiao, P., Alavi, A. H., & McLaren, B. M. (2022). Artificial Intelligence in STEM Education: Current Developments and Future Considerations. In Artificial Intelligence in STEM Education (pp. 3-14). CRC Press. https://doi.org/10.1201/9781003181187
    Pajares, F. (2006). Self-efficacy during childhood and adolescence. Self-efficacy beliefs of adolescents, 5, 339-367.
    Papamitsiou, Z., & Economides, A. A. (2014). Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Journal of Educational Technology & Society, 17(4), 49-64.
    Patwardhan, N., Marrone, S., & Sansone, C. (2023). Transformers in the Real World: A Survey on NLP Applications. Information, 14(4), 242. https://www.mdpi.com/2078-2489/14/4/242
    Paulhus, D. L., & Vazire, S. (2007). The self-report method. Handbook of research methods in personality psychology, 1(2007), 224-239.
    Peng, H., Ma, S., & Spector, J. M. (2019). Personalized adaptive learning: an emerging pedagogical approach enabled by a smart learning environment. Smart Learning Environments, 6(1), 9. https://doi.org/10.1186/s40561-019-0089-y
    Piaget, J. (1976). Piaget’s Theory. In B. Inhelder, H. H. Chipman, & C. Zwingmann (Eds.), Piaget and His School: A Reader in Developmental Psychology (pp. 11-23). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-46323-5_2
    Piccinini, P., Prati, A., & Cucchiara, R. (2012). Real-time object detection and localization with SIFT-based clustering. Image and Vision Computing, 30(8), 573-587. https://doi.org/10.1016/j.imavis.2012.06.004
    Pirkkalainen, H., Pawlowski, J. M., & Pappa, D. (2017). Educators' open educational collaboration online: The dilemma of emotional ownership. Computers & Education, 106, 119-136. https://doi.org/10.1016/j.compedu.2016.12.005
    Plans, A. (2015). The every student succeeds act: Explained. Education Week.
    Premlatha, K. R., & Geetha, T. V. (2015). Learning content design and learner adaptation for adaptive e-learning environment: a survey. Artificial Intelligence Review, 44(4), 443-465. https://doi.org/10.1007/s10462-015-9432-z
    Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data, 1(1), 51-59. https://doi.org/10.1089/big.2013.1508
    Qin, F., Li, K., & Yan, J. (2020). Understanding user trust in artificial intelligence‐based educational systems: Evidence from China. British Journal of Educational Technology, 51(5), 1693-1710.
    Qushem, U. B., Christopoulos, A., Oyelere, S. S., Ogata, H., & Laakso, M.-J. (2021). Multimodal Technologies in Precision Education: Providing New Opportunities or Adding More Challenges? Education Sciences, 11(7). https://doi.org/10.3390/educsci11070338
    Rahman, M. M., Watanobe, Y., & Nakamura, K. (2020). Source Code Assessment and Classification Based on Estimated Error Probability Using Attentive LSTM Language Model and Its Application in Programming Education. Applied Sciences, 10(8), 2973. https://www.mdpi.com/2076-3417/10/8/2973
    Rakoczy, K., Pinger, P., Hochweber, J., Klieme, E., Schütze, B., & Besser, M. (2019). Formative assessment in mathematics: Mediated by feedback's perceived usefulness and students' self-efficacy. Learning and Instruction, 60, 154-165. https://doi.org/10.1016/j.learninstruc.2018.01.004
    Rapee, R. M., Kim, J., Wang, J., Liu, X., Hofmann, S. G., Chen, J., Oh, K. Y., Bögels, S. M., Arman, S., Heinrichs, N., & Alden, L. E. (2011). Perceived Impact of Socially Anxious Behaviors on Individuals' Lives in Western and East Asian Countries. Behavior Therapy, 42(3), 485-492. https://doi.org/10.1016/j.beth.2010.11.004
    Rau, M. A. (2022). Adaptive Support for Representational Competencies during Technology-Based Problem-Solving in STEM. In Artificial Intelligence in STEM Education (pp. 51-60). CRC Press.
    Rawat, W., & Wang, Z. (2017). Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation, 29(9), 2352-2449. https://doi.org/10.1162/neco_a_00990
    Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition,
    Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. Proceedings of the IEEE conference on computer vision and pattern recognition,
    Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
    Reeves, T. D., & Chiang, J.-L. (2019). Effects of an asynchronous online data literacy intervention on pre-service and in-service educators’ beliefs, self-efficacy, and practices. Computers & Education, 136, 13-33. https://doi.org/10.1016/j.compedu.2019.03.004
    Rehmat, A. P. (2015). Engineering the path to higher-order thinking in elementary education: A problem-based learning approach for STEM integration.
    Reinholz, D. L., White, I., & Andrews, T. (2021). Change theory in STEM higher education: a systematic review. International Journal of STEM Education, 8(1), 37. https://doi.org/10.1186/s40594-021-00291-2
    Reynders, G., Lantz, J., Ruder, S. M., Stanford, C. L., & Cole, R. S. (2020). Rubrics to assess critical thinking and information processing in undergraduate STEM courses. International Journal of STEM Education, 7(1), 9. https://doi.org/10.1186/s40594-020-00208-5
    Roehrig, G. H., Dare, E. A., Ring-Whalen, E., & Wieselmann, J. R. (2021). Understanding coherence and integration in integrated STEM curriculum. International Journal of STEM Education, 8(1), 2. https://doi.org/10.1186/s40594-020-00259-8
    Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12-27.
    Ross, B., Chase, A.-M., Robbie, D., Oates, G., & Absalom, Y. (2018). Adaptive quizzes to increase motivation, engagement and learning outcomes in a first year accounting unit. International Journal of Educational Technology in Higher Education, 15(1), 30. https://doi.org/10.1186/s41239-018-0113-2
    Sahin, D., & Yilmaz, R. M. (2020). The effect of Augmented Reality Technology on middle school students' achievements and attitudes towards science education. Computers & Education, 144, 103710. https://doi.org/10.1016/j.compedu.2019.103710
    Sanders, M. (2009). Integrative STEM education: primer. The Technology Teacher, 68(4), 20-26.
    Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
    Schrader, C., & Grassinger, R. (2021). Tell me that I can do it better. The effect of attributional feedback from a learning technology on achievement emotions and performance and the moderating role of individual adaptive reactions to errors. Computers & Education, 161, 104028. https://doi.org/10.1016/j.compedu.2020.104028
    Scogin, S. C., Dorantes, M., Couwenhoven, A., Vander Kolk, J., Schuen, A., Grimmer, C., Porchik, M., Veine, C., Plohetski, S., & Bowers, S. (2023). The Relationship Between Pre-Service Teachers’ Ideologies and Learner-Centered Approaches in STEM Classrooms. Journal of Science Teacher Education, 34(2), 181-200. https://doi.org/10.1080/1046560X.2022.2039344
    Scott, M. J., & Ghinea, G. (2014). On the Domain-Specificity of Mindsets: The Relationship Between Aptitude Beliefs and Programming Practice. IEEE Transactions on Education, 57(3), 169-174. https://doi.org/10.1109/TE.2013.2288700
    Sein, M. (2022). AI-assisted knowledge assessment techniques for adaptive learning environments. Computers and Education: Artificial Intelligence, 3, 100050. https://doi.org/10.1016/j.caeai.2022.100050
    Shetty, A. K., Saha, I., Sanghvi, R. M., Save, S. A., & Patel, Y. J. (2021, 2-4 April 2021). A Review: Object Detection Models. 2021 6th International Conference for Convergence in Technology (I2CT),
    Silva, L. C. e., Sobrinho, Á. A. d. C. C., Cordeiro, T. D., Melo, R. F., Bittencourt, I. I., Marques, L. B., Matos, D. D. M. d. C., Silva, A. P. d., & Isotani, S. (2023). Applications of convolutional neural networks in education: A systematic literature review. Expert Systems with Applications, 231, 120621. https://doi.org/10.1016/j.eswa.2023.120621
    Sohan, M., Sai Ram, T., & Rami Reddy, C. V. (2024). A Review on YOLOv8 and Its Advancements. In I. J. Jacob, S. Piramuthu, & P. Falkowski-Gilski, Data Intelligence and Cognitive Informatics Singapore.
    Sondergeld, T. A., Koskey, K. L., Stone, G. E., & Peters-Burton, E. E. (2015). Data-driven STEM assessment. In STEM Road Map (pp. 165-188). Routledge.
    Sowmya, R., & Suneetha, K. (2017). Data mining with big data. 2017 11th International Conference on Intelligent Systems and Control (ISCO),
    Steels, L., & López de Mantaras, R. (2018). The Barcelona declaration for the proper development and usage of artificial intelligence in Europe. AI Communications, 31(6), 485-494.
    Sun, D., Ouyang, F., Li, Y., & Zhu, C. (2021). Comparing learners’ knowledge, behaviors, and attitudes between two instructional modes of computer programming in secondary education. International Journal of STEM Education, 8(1), 54. https://doi.org/10.1186/s40594-021-00311-1
    T. S, A., & Guddeti, R. M. R. (2020). Automatic detection of students’ affective states in classroom environment using hybrid convolutional neural networks. Education and Information Technologies, 25(2), 1387-1415. https://doi.org/10.1007/s10639-019-10004-6
    Tang, T., Vezzani, V., & Eriksson, V. (2020). Developing critical thinking, collective creativity skills and problem solving through playful design jams. Thinking Skills and Creativity, 37, 100696. https://doi.org/10.1016/j.tsc.2020.100696
    Taxipulati, S., & Lu, H.-D. (2021). The Influence of Feedback Content and Feedback Time on Multimedia Learning Achievement of College Students and Its Mechanism [Methods]. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.706821
    Taylor, D. L., Yeung, M., & Bashet, A. (2021). Personalized and adaptive learning. Innovative learning environments in STEM higher education: Opportunities, Challenges, and Looking Forward, 17-34.
    Termritthikun, C., & Kanprachar, S. (2017, 8-10 March 2017). Accuracy improvement of Thai food image recognition using deep convolutional neural networks. 2017 International Electrical Engineering Congress (iEECON),
    Terven, J., Córdova-Esparza, D.-M., & Romero-González, J.-A. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Machine Learning and Knowledge Extraction, 5(4), 1680-1716. https://www.mdpi.com/2504-4990/5/4/83
    Tian, Z., Shen, C., Chen, H., & He, T. (2019). Fcos: Fully convolutional one-stage object detection. Proceedings of the IEEE/CVF international conference on computer vision,
    Tien, J. M. (2017). Internet of Things, Real-Time Decision Making, and Artificial Intelligence. Annals of Data Science, 4(2), 149-178. https://doi.org/10.1007/s40745-017-0112-5
    Turing, A. M. (2009). Computing Machinery and Intelligence. In R. Epstein, G. Roberts, & G. Beber (Eds.), Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer (pp. 23-65). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6710-5_3
    Tzafilkou, K., Perifanou, M., & Economides, A. A. (2021). Development and validation of a students’ remote learning attitude scale (RLAS) in higher education. Education and Information Technologies, 26(6), 7279-7305. https://doi.org/10.1007/s10639-021-10586-0
    Van Geel, M., Keuning, T., Visscher, A. J., & Fox, J.-P. (2016). Assessing the effects of a school-wide data-based decision-making intervention on student achievement growth in primary schools. American Educational Research Journal, 53(2), 360-394.
    Vanbecelaere, S., Van den Berghe, K., Cornillie, F., Sasanguie, D., Reynvoet, B., & Depaepe, F. (2020). The effectiveness of adaptive versus non-adaptive learning with digital educational games. Journal of Computer Assisted Learning, 36(4), 502-513. https://doi.org/10.1111/jcal.12416
    Vesin, B., Mangaroska, K., & Giannakos, M. (2018). Learning in smart environments: user-centered design and analytics of an adaptive learning system. Smart Learning Environments, 5(1), 24. https://doi.org/10.1186/s40561-018-0071-0
    Vygotsky, L. S., & Cole, M. (1978). Mind in society: Development of higher psychological processes. Harvard university press.
    Wahono, B., Lin, P.-L., & Chang, C.-Y. (2020). Evidence of STEM enactment effectiveness in Asian student learning outcomes. International Journal of STEM Education, 7(1), 36. https://doi.org/10.1186/s40594-020-00236-1
    Wang, L.-H., Chen, B., Hwang, G.-J., Guan, J.-Q., & Wang, Y.-Q. (2022). Effects of digital game-based STEM education on students’ learning achievement: a meta-analysis. International Journal of STEM Education, 9(1), 26. https://doi.org/10.1186/s40594-022-00344-0
    Wang, M., Jia, H., Sugumaran, V., Ran, W., & Liao, J. (2010). A web-based learning system for software test professionals. IEEE Transactions on Education, 54(2), 263-272.
    Wang, S., Christensen, C., Cui, W., Tong, R., Yarnall, L., Shear, L., & Feng, M. (2023). When adaptive learning is effective learning: comparison of an adaptive learning system to teacher-led instruction. Interactive Learning Environments, 31(2), 793-803. https://doi.org/10.1080/10494820.2020.1808794
    Wang, W.-S., Cheng, Y.-P., Lee, H.-Y., Lin, C.-J., & Huang, Y.-M. (2023). Impact of anxiety and confidence in virtual reality-mediated learning transferred to hands-on tasks. Journal of Computer Assisted Learning, 39(4), 1368-1381. https://doi.org/https://doi.org/10.1111/jcal.12805
    Wang, X., Wang, X., & Wilkes, D. M. (2020). A Computer Vision System for Visual Perception in Unknown Environments. In Machine Learning-based Natural Scene Recognition for Mobile Robot Localization in An Unknown Environment (pp. 35-60). Springer Singapore. https://doi.org/10.1007/978-981-13-9217-7_3
    Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1), 9. https://doi.org/10.1186/s40537-016-0043-6
    Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. Learning, Media and Technology, 45(3), 223-235. https://doi.org/10.1080/17439884.2020.1798995
    Wu, T.-T., Lee, H.-Y., Li, P.-H., Huang, C.-N., & Huang, Y.-M. (2023). Promoting Self-Regulation Progress and Knowledge Construction in Blended Learning via ChatGPT-Based Learning Aid. Journal of Educational Computing Research, 61(8), 3-31. https://doi.org/10.1177/07356331231191125
    Wu, T.-T., Lee, H.-Y., Wang, W.-S., Lin, C.-J., & Huang, Y.-M. (2023). Leveraging computer vision for adaptive learning in STEM education: effect of engagement and self-efficacy. International Journal of Educational Technology in Higher Education, 20(1), 53. https://doi.org/10.1186/s41239-023-00422-5
    Xianmin, Y., Sisi, T., & Jihong, L. (2016). The Definition Potential Value and Challenges of Big Data in Education [J]. Modern distance education research, 1, 50-61.
    Xiong, Y., Xinya, G., & Xu, J. (2023). CNN-Transformer: A deep learning method for automatically identifying learning engagement. Education and Information Technologies. https://doi.org/10.1007/s10639-023-12058-z
    Xu, W., & Ouyang, F. (2022). The application of AI technologies in STEM education: a systematic review from 2011 to 2021. International Journal of STEM Education, 9(1), 59. https://doi.org/10.1186/s40594-022-00377-5
    Yaki, A. A. (2022). Fostering Critical Thinking Skills Using Integrated STEM Approach among Secondary School Biology Students. European Journal of STEM Education, 7(1), 6.
    Yang, A. C. M., Flanagan, B., & Ogata, H. (2022). Adaptive formative assessment system based on computerized adaptive testing and the learning memory cycle for personalized learning. Computers and Education: Artificial Intelligence, 3, 100104. https://doi.org/10.1016/j.caeai.2022.100104
    Yang, Z., Yang, J., Rice, K., Hung, J. L., & Du, X. (2020). Using Convolutional Neural Network to Recognize Learning Images for Early Warning of At-Risk Students. IEEE Transactions on Learning Technologies, 13(3), 617-630. https://doi.org/10.1109/TLT.2020.2988253
    Yannier, N., Hudson, S. E., & Koedinger, K. R. (2020). Active Learning is About More Than Hands-On: A Mixed-Reality AI System to Support STEM Education. International Journal of Artificial Intelligence in Education, 30(1), 74-96. https://doi.org/10.1007/s40593-020-00194-3
    Yeung, R. C. Y., Yeung, C. H., Sun, D., & Looi, C.-K. (2024). A systematic review of Drone integrated STEM education at secondary schools (2005–2023): Trends, pedagogies, and learning outcomes. Computers & Education, 212, 104999. https://doi.org/10.1016/j.compedu.2024.104999
    Yiu, H. L. (2013). The influence of student–teacher racial match on student–teacher closeness: A focus on Asian and Asian American students. Asian American Journal of Psychology, 4, 126-135. https://doi.org/10.1037/a0027785
    Yoshinaga, S., Shimada, A., Nagahara, H., & Taniguchi, R.-i. (2011). Object Detection Using Local Difference Patterns. In R. Kimmel, R. Klette, & A. Sugimoto, Computer Vision – ACCV 2010 Berlin, Heidelberg.
    Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation, 31(7), 1235-1270. https://doi.org/10.1162/neco_a_01199
    Zaman, B. U. (2023). Transforming Education Through AI, Benefits, Risks, and Ethical Considerations. Authorea Preprints. https://doi.org/10.36227/techrxiv.24231583.v1
    Zhang, J., Gao, L., Qin, W., Lyu, Y., & Li, X. (2016). Big-data-driven operational analysis and decision-making methodology in intelligent workshop. Computer Integrated Manufacturing Systems, 22(5), 1220-1228.
    Zhao, H., Li, G., & Feng, W. (2018). Research on application of artificial intelligence in medical education. 2018 International Conference on Engineering Simulation and Intelligent Control (ESAIC),
    Zheng, L., Zhong, L., Niu, J., Long, M., & Zhao, J. (2021). Effects of Personalized Intervention on Collaborative Knowledge Building, Group Performance, Socially Shared Metacognitive Regulation, and Cognitive Load in Computer-Supported Collaborative Learning. Educational Technology & Society, 24(3), 174-193. https://www.jstor.org/stable/27032864
    Zhu, X., Chen, J., & Zhu, Z. H. (2021). Adaptive learning observer for spacecraft attitude control with actuator fault. Aerospace Science and Technology, 108, 106389. https://doi.org/10.1016/j.ast.2020.106389
    Zotou, M., Tambouris, E., & Tarabanis, K. (2020). Data-driven problem based learning: enhancing problem based learning with learning analytics. Educational Technology Research and Development, 68(6), 3393-3424. https://doi.org/10.1007/s11423-020-09828-8
    Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object Detection in 20 Years: A Survey. Proceedings of the IEEE, 111(3), 257-276. https://doi.org/10.1109/JPROC.2023.3238524

    無法下載圖示 校內:2029-07-02公開
    校外:2029-07-02公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE