簡易檢索 / 詳目顯示

研究生: 陳彥丞
Chen, Yan-Cheng
論文名稱: 雙流體化床氣化爐之燃燒及氣化流場模擬分析
Numerical Simulation Analysis of Combustion and Gasification of a Dual Fluidized-Bed Gasifier
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 85
中文關鍵詞: 雙流體化床氣化爐生質能氣化
外文關鍵詞: Dual fluidized-bed gasifier, Biomass, Gasification.
相關次數: 點閱:132下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流體化床具有高熱傳率、高效率、低污染物排放、低燃燒溫度以及燃料選擇限制較低等優點,也廣泛應用於工業及發電上。雙流體化床氣化爐是採用快速內循環流體化床(Fast Internally Circulating Fludized-Bed)之概念來設計,其設計是將流體化床分為氣化流體化床區以及燃燒流體化床區。在這兩個區域間藉由固體粒子之流動來形成一循環迴路,此設計能將燃燒反應以及氣化反應分開:在氣化流體化床區只注入水蒸汽進行氣化反應;在燃燒流體化床區只注入空氣進行燃燒反應。因此能在氣化流體化床區中得到近乎沒有氮氣之合成氣。
    本研究以計算流體力學軟體ANSYS-FLUENT來進行模擬,針對雙流體化床氣化爐氣化區以及雙流體化床氣化爐建立三維多相反應流模擬分析模型。針對雙流體化床氣化爐氣化區模型之氣化性能進行參數分析:不同蒸汽燃料比及不同床砂循環率之影響。變動蒸汽燃料比,固定燃料量,改變水蒸汽流量,得到不同蒸汽燃料比並進行測試。結果顯示,當蒸汽燃料比較高時,水蒸汽增加,有助於水氣轉化反應,使得合成氣中之氫氣和二氧化碳之含量較高,一氧化碳含量較低。變動床砂循環率並觀察其對氣化性能之影響。結果顯示,當床砂流量增加時會擴展水氣轉化反應速率之範圍。在雙流體化床氣化爐中,已成功建立床砂之循環模式,將內部流場可視化,檢視粒子於兩區之間之流動現象。並加入燃燒及氣化反應,觀察氣體成份分佈、反應區域大小、合成氣出口成份比例等等。與實驗進行比較,發現模擬之二氧化碳以及氫氣含量高於文獻數據;甲烷之含量與文獻相近;一氧化碳之含量低於文獻許多。此一結果推測是因為反應範圍會受到氣固相流場影響,床砂之滾動範圍不夠大導致反應無法發展並堆積在床區底部。為使其在冷流場能達到鼓泡效應,將水蒸汽流量加大,結果與預期相符。

    A fluidized-bed gasifier is characterized by high thermal conductivity, high efficiency, low pollutant emissions, and few fuel selection limitations, and is widely used in industries and power plants. For the present research, a dual fluidized-bed gasifier was designed using the FICFB (Fast Internal Circulating Fluidized Bed) model, which is divided into two sections, the gasification zone and the combustion zone, which form a circulation loop through which a stream of solid particles flows. Gasification occurs only in the gasification zone, so the syngas produced is completely free of nitrogen.
    In this study, the CFD software, ANSYS-FLUENT, is used to simulate both the dual fluidized-bed gasifier and the gasification zone. The dual fluidized-bed gasifier and the gasification zone are modeled in 3D multiphase flow numerical systems. The SF (steam to fuel ratio) and the bed material circulation rate are tested in the model of the gasification zone. In gasification results, when SF changed, the biomass inlet would be fixed, and the steam inlet would be changed. The results show that when the SF is changed, the biomass inlet becomes fixed and the steam inlet changes. When SF increased, the reaction rate of the water gas shift reaction also increases. Regarding the changing bed materials circulation rate, when the circulation rate increased, the scope of the chemical reaction also increases. When the bed materials circulation in the dual fluidized-bed gasifier model is successfully constructed, the path of bed materials can be predicted, the flow field can be visualized, the syngas composition, and both the gas distribution and reaction zone can be observed. The content of CO2 and H2 in the simulation turned out to be higher than in the actual experiment whereas the content of CO was lower. Only the CH4 level was accurately predicted by the simulation. The differences between the simulation and the reference are due to the chemical reaction range, which is influenced by the flow field. The bed material never reached the bubbling stage, so the reaction was incomplete. In order to achieve the bubbling effect, the steam in let was increased, after which the results fell in line with expectations.

    摘要 I Abstract III 誌謝 XV 目錄 XVI 圖目錄 XIX 表目錄 XXII 符號說明 XXIII 第一章、導論 1 §1.1前言 1 §1.2氣化理論 2 §1.3流體化床簡介 3 §1.4研究動機 5 §1.5文獻回顧 6 第二章、數學與物理模型 14 §2.1 模型假設 14 §2.2統御方程式 15 §2.3化學反應動力式 25 §2.4生質燃料之相關性質 28 第三章、數值方法 29 §3.1概述 29 §3.2模擬計算流程 29 §3.3 Phase-Coupled SIMPLE運算法則 31 §3.4收斂標準 35 第四章、結果與討論 37 §4.1 雙流體化床氣化爐氣化區之網格模型及操作條件 38 §4.1.1雙流體化床氣化爐氣化區之網格模型 38 §4.1.2雙流體化床氣化爐氣化區模型之操作條件 41 §4.2 雙流體化床氣化爐氣化區之網格獨立測試 46 §4.3 雙流體化床氣化爐氣化區之參數分析 47 §4.3.1 蒸汽燃料比(Steam to Fuel Ratio)對氣化性能之影響 47 §4.3.2 床砂循環率對氣化性能之影響 51 §4.4 雙流體化床氣化爐網格模型及操作條件 54 §4.4.1雙流體化床氣化爐之網格模型 54 §4.4.2雙流體化床氣化爐模型之操作條件 55 §4.5 雙流體化床氣化爐之內部冷流流場分析 58 §4.6 雙流體化床氣化爐之氣化性能分析 66 §4.7 雙流體化床氣化爐之鼓泡模擬操作及後續調整 72 第五章、結論與未來建議 77 §5.1結論 77 §5.2未來建議 79 參考文獻 80

    【1】IEA, "Key World Energy Statistics 2017", 2017.
    【2】Singh R.I., Brink A. and Hupa M., "CFD Modeling to Study Fluidized Bed Combustion and Gasification", Applied Thermal Engineering, vol. 52, pp. 585-614, 2013.
    【3】呂錫民,"氣化技術",科學發展,vol. 435, pp. 62-66, 2009.
    【4】羅國肇,"流體化床燃燒爐—由糖炒栗子談起",科學發展,vol. 450, pp. 6-11, 2010.
    【5】Hofbauer H., Rauch R., Bosch K., Koch R. and Aichernig C., "Biomass CHP Plant Güssing – A Success Story", Pyrolysis and Gasification of Biomass and Waste, 2001.
    【6】Anthony D.B. and Howard J.B., "Coal Devolatilization and Hydrogasification", American Institute of Chemical Engineers, vol. 22, pp. 625-656, 1976.
    【7】Agarwal P.K., "A Single Particle Model for the Evolution and Combustion of Coal Volatiles", Fuel, vol. 65, pp. 803-810, 1986.
    【8】Smoot L.D. and Brown B.W., "Controlling Mechanisms in Gasification of Pulverized Coal", Fuel, vol. 66, pp. 1249-1256, 1987.
    【9】Smith I.W., "The Combustion Rates of Coal Chars: A Review", In: 19th international symposium on combustion, Philadephia: The Combustion Institute, pp. 1045-1065, 1982.
    【10】Yu L., Lu J., Zhang X. and Zhang S., "Numerical Simulation of the Bubbling Fluidized Bed Coal Gasification by the Kinetic Theory of Granular Flow (KTGF) ", Fuel, vol. 86, pp. 722-734, 2007.
    【11】Armstrong L.M., Gu S. and Luo K.H., "CFD Modelling of the Co-Gasification of Biomass and Coal Particles in Fluidized Beds", Proceedings of the Bioten Conference on Biomass Bioenergy and Biofuels 2010, CRC Press, Birmingham, GB, 2010.
    【12】Armstrong L.M., Gu S. and Luo K.H., "Parametric Study of Gasification Processes in a BFB Coal Gasifier", Industrial and Engineering Chemistry Research, vol. 50, pp. 5959-5974, 2011.
    【13】Deng Z., Xiao R., Jin B., Huang H., Shen L., Song Q. and Li Q., "Computational Fluid Dynamics Modeling of Coal Gasification in a Pressurized Spout-Fluid Bed", Energy and Fuels, vol. 22, pp. 1560-1569, 2008.
    【14】Gerber S., Behrendt F. and Oevermann M., "An Eulerian Modeling Approach of Wood Gasification in a Bubbling Fluidized Bed Reactor Using Char as Bed Material", Fuel, vol. 89, pp. 2903-2917, 2010.
    【15】Wang Y. and Yan L., "CFD Based Combustion Model for Sewage Sludge Gasification in a Fluidized Bed", Frontiers of Chemical Engineering in China, vol. 3, pp. 138-145, 2009.
    【16】He L., Schotte E., Thomas S., Schlinkert A., Herrmann A., Mosch V., Rajendran V. and Heinrich S., "Wood Gasification in a Lab-Scale Bubbling Fluidized Bed: Experiment and Simulation", Proceeding of 20th International Conference on Fluidized Bed Combustion, pp.686-692, 2010.
    【17】Wang X, Jin B, and Zhong W, "Three-Dimensional Simulation of Fluidized Bed Coal Gasification", Chemical Engineering and Processing, vol. 48, pp. 695-705, 2009.
    【18】Kantarelis E., Donaj P., Yang W. and Zabaniotou A., "Sustainable Valorization of Plastic Wastes for Energy with Environmental Safety via High-Temperature Pyrolysis (HTP) and High-Temperature Steam Gasification (HTSG)", Journal of Hazardous Materials, vol. 167, pp. 675-684, 2009.
    【19】程祖田,"流化床燃燒技術及應用",中國電力出版社, 2013.
    【20】Thapa R.K., Pfeifer C. and Halvorsen B.M., "Modeling of Reaction Kinetics in Bubbling Fluidized Bed Biomass Gasification Reactor", International Journal of Energy and Environment, vol. 5, pp. 35-44, 2014.
    【21】Schmid J.C., Wolfesberger U., Koppatz S., Pfeifer C. and Hofbauer H., "Variation of Feedstock in a Dual Fluidized Bed Steam Gasifier-Influence on Product Gas, Tar Content, and Composition", Environmental Progress & Sustainable Energy, vol. 31, pp. 205-215, 2012.
    【22】Hui L., Robert J.C., Reinhard S. and Chang-hsien L., “Three-Dimensional Full-Loop Simulation of a Dual Fluidized-Bed Biomass Gasifier”, Applied Energy, vol. 160, pp. 489-501, 2015.
    【23】Hui L., Robert J.C. and Reinhard S., “Operating Parameter Effects on the Solids Circulation Rate in the CFD Simulation of a Dual Fluidized-Bed Gasification System”,Chemical Engineering Science, vol.169, pp.235-245, 2017.
    【24】詹凱為,”雙流體化床氣化爐之生質燃料氣化模擬分析”,國立成功大學航空太空工程學系碩士論文,2017.
    【25】Linbo Y. , C. Jim L., Guangxi Y., Boshu H. and John R.G., "Simulation of Biomass-Steam Gasification in Fluidized Bed Reactors: Model Setup, Comparisons and Preliminary Predictions", Bioresource Technology, vol. 221, pp. 625-635, 2016.
    【26】Bogdanova V., George E., Meynet N., Kara Y. and Barba A., "Numerical CFD Simulations for Optimizing a Biomass Gasifier and Methanation Reactor Design and Operating Conditions", Energy Procedia, vol. 120, pp. 278-285, 2017.
    【27】Chejne F. and Hernandez J.P., "Modeling and Simulation of Coal Gasification Process in Fluidized Bed", Fuel, vol. 81, pp. 1687-1702, 2002.
    【28】ANSYS, ANSYS FLUENT 15.0 Theory Guide, ANSYS,Inc.,
    Southpointe, 2013.
    【29】Lun C.K.K., Savage S.B., Jeffrey D.J. and Chepurniy N., "Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field," Journal of Fluid Mechanics, vol. 140, pp. 223-256, 1984.
    【30】Gidaspow D., Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, Academic Press, London, 1994.
    【31】Launder B.E. and Spalding D.B., Lectures in Mathematical Models of Turbulence, Academic Press, London, England, 1972.
    【32】Badzioch S. and Hawksley P.G.W., "Kinetics of Thermal Decomposition of Pulverized Coal Particles", Industrial and Engineering Chemistry Process Design and Development, vol. 9, pp. 521-530, 1970.
    【33】Cheng P., "Two-Dimensional Radiating Gas Flow by a Moment Method", American Institute of Aeronautics and Astronautics, vol. 2, pp. 1662-1664, 1964.
    【34】Weimer A.W. and Clough D.E., "Modeling a Low Pressure Steam-oxygen Fluidized Bed Coal Gasifying Reactor", Chemical Engineering Journal, vol. 36, pp. 549-567, 1981.
    【35】Klimanek A., Adamczyk W., Katelbach-Woźniak A., Węcel G. and Szlęk A., "Towards a Hybrid Eulerian–Lagrangian CFD Modeling of Coal Gasification in a Circulating Fluidized Bed Reactor", Fuel, vol. 152, pp. 131–137, 2015.
    【36】Geldart D., "Types of Gas Fluidization", Powder Technology, vol. 7, pp. 285-292, 1973.
    【37】Vasconcelos P.D.S. and Mesquita A.L.A., "Minimum and Full Fluidization Velocity for Alumina Used in the Aluminum Smelter", International Journal of Engineering Business Management, vol. 3, pp. 7-13, 2011.
    【38】Kern S., Pfeifer C. and Hofbauer H., "Gasification of Wood in a Dual Fluidized Bed Gasifier: Influence of Fuel Feeding on Process Performance", Chemical Engineering Science, vol. 90, pp. 284-298, 2013.

    下載圖示 校內:2020-09-06公開
    校外:2020-09-06公開
    QR CODE