| 研究生: |
李永騰 Li, Yung-Teng |
|---|---|
| 論文名稱: |
由2,7-二苯并咪唑芴合成新穎有機金屬高分子及其鑑定 Synthesis and Characterization of Novel Organometallic Polymers based on Fluorene-Bridged Benzimidazolylidene |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 有機金屬高分子 、芴 、含氮雜環碳烯 |
| 外文關鍵詞: | organometallic polymers, fluorine, benzimidazolium salt |
| 相關次數: | 點閱:97 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以含氮雜環碳烯-金屬配位合成有機金屬高分子已陸續被發表,然而研究著重於碳烯上取代基的修飾。本研究利用Suzuki coupling反應與季銨化反應合成含芴中心的苯并咪唑塩 (BNM),藉由碳烯-第十族金屬配位合成新型有機金屬高分子,結構具有鈀金屬(Pd) 命名為PMPd,而具有鉑金屬(Pt) 命名為PMPt。所有合成的單體、高分子以核磁共振光譜(1H-NMR)、紅光光譜(FT-IR)、元素分析儀(EA)鑑定其結構,並對高分子的熱性質、光學性質和電化學性質進行探討。
在熱性質方面,PMPd和PMPt的玻璃轉移溫度(Tg)分別在196與195℃,而熱裂解溫度(Td)則分別在286與285℃,顯示PMPd和PMPt具備良好的熱穩定性。在電化學性質方面,利用氧化和還原起始電位分別求出高分子HOMO和LUMO能階,其中PMPd和PMPt的HOMO能階在-5.78和-5.76 eV,而LUMO能階在-2.29和-2.26 eV。在光學性質分面,PMPd與PMPt在溶液態的最大吸收在343 nm,而螢光發光波長分別在407 nm與405 nm;PMPd與PMPt在酸的存在下,會降低重原子效應對螢光的影響,造成螢光強度隨之增強,因此使得PMPd與PMPt具備作為酸鹼感測材料的潛力。
In this study, a novel fluorene-bridged benzimidazolium salt (BNM) was successfully synthesized by successive Suzuki coupling reaction and quaternization. BNM was employed to prepare new organometallic polymers of platinum (PMPt) and palladium (PMPd) via ligand-metal coordination. The organimetallic polymers were characterized by GPC, 1H-NMR, FT-IR, elemental analysis, DSC, TGA, optical spectra, and cyclic voltammetry. They exhibited good thermal stability with 5% weight loss temperature above 285℃ in nitrogen atmosphere. Cyclic voltammetric measurement revealed that their LUMO and HOMO energy levels are -2.26 and -2.29 eV and -5.76 and -5.78 eV, respectively. Optical properties of the organometallic polymers were investigated by absorption and photoluminescence (PL) spectra. The PL intensity in solution was enhanced obviously upon increasing the concentration of H+, while the absorption spectra remained almost unchanged. The PL enhancement is probably due to reduced intersystem crossing in the presence of protonic acid. This phenomenon indicates that these organometallic polymers are promosing materials for luminescent pH-sensory applications.
[1] F. S. Arimoto, A. C. Haven, J. Am. Chem. Soc., 77, 6295, (1955).
[2] K. A. Williams, A. J. Boydston, C. W. Bielawski, Chem. Soc. Rev., 36, 729, (2007).
[3] A. J. Arduengo III, R. L. Harlow, M. Kline, J. Am. Chem. Soc., 113, 361, (1991).
[4] A. J. Boydston, K. A. Williams, C. W. Bielawski, J. Am. Chem. Soc., 127, 12496,(2005).
[5] A. J. Boydston, J. D. Rice, M. D. Sanderson, O. L. Dykhno, C. W. Bielawski, Organometallics, 25, 6087, (2006).
[6] S. C. Yu, C. C. Kwok, W. K. Chan, C. M. Che, Adv. Mater., 15,1643, (2003).
[7] C. A. Fustin, B. G. G. Lohmeijer, A. S. Duwez, A. M. Jonas, U. S. Schubert, J. F. Gohy, Adv. Mater., 17, 1162,(2005).
[8] J. S. Wilson, A. S. Dhoot, A. B. Seeley, M. S. Khan, A. K. ohler, R. H. Friend, Nature, 413, 828, (2001).
[9] W. Y. Wong, Dalton Trans., 4495, (2007).
[10] H. W. Wanzlick, Angew. Chem.., Int. Ed. 1, 75, (1962).
[11] S. Di`ez-Gonza`lez, N. Marion, S. P. Nolan, Chem. Rev., 100, 39, (2009).
[12] D. Bourission, O. Guerret, F. P. Gabbai, G. Bertrand, Chem. Rev, 100, 39, (2000).
[13] F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed.,47, 3122, (2008).
[14] L. Pauling, Chem. Commun. 688, (1980)
[15] Q. Peng, M. Xie, Y. Huang, Z. Lu, Y. Cao, Macromol. Chem. Phys., 206, 2373, (2005).
[16] D. A. Skoog, E. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th edition, Saunders College Publishing, (1997).
[17] N. J. Turro, Modern Molecular Photochemistry, Mill Valley, Calif. :University Science Books, 170, (1991).
[18] J. Franck, E. Teller, J. Chem. Phys. 6, 861. (1938).
[19] J. Frenkel, Phys. Rev. 37, 17, (1931).
[20] A. Eisfeld, J. S. Briggs, Chemical Physics, 324, 376, (2006).
[21] E.E. Jelley, Nature, 138, 1009, (1936).
[22] J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, (1970).
[23] J. Malkin, Photophysical and Photochemical Properties of Aromatic Compounds, CRC, Boca Raton, (1992).
[24] N. J. Turro, Modern Molecular Photochemistry, University Science Books, Mill Valley, (1991).
[25] Y. Hong, W. Y. Lam, B. Z. Tang, Chem. Commun., 4332, (2009).
[26] D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental analysis 5th ed, Harcourt Brace & Co., 1998, chapter 15.
[27] S. Janietz, D. Bradley, M. Grell, M. Inbasekaran, E. P. Woo, Appl. Phys. Lett., 73, 2453 (1998).
[28] N. Miyaura, A. Suzuki, Chem. Rev., 95, 2457 (1995).
[29] N. Miyaura, K. Yamada, H. Suginome, A. Suzuki, J. Am. Chem. Soc., 107, 972 (1985).
[30] A. R. Martin, Y. Yang, Acta Chem. Scand., 47,221 (1993)
[31] 王宗櫚、謝達華、何國賢, “聚合物的合成與鑑定法”, (1995).
[32] S Janietz, D. D. C. Bradley,. M. Grell, C. Giebeler, M. Inbasekaran, E. P. Woo, Appl. Phys. Lett., 73, 2453. (1998).
[33] W. L. Yu, H. Meng, J. Pei, W. Huang, Y. F. Li, A. J. Heeger, Macromolecules, 31, 4838 (1998).
[34] Q. Zeng, Z. Li, Y. Dong, C. Di, A. Qin, Y. Hong, L. Ji, Z. Zhu, K. W. Jim, G. Yu, Q. Li, Z. Li, Y. Liu, J. Qin, B. Z. Tang, Chem. Commun., 70, (2007).
[35] S. Dong, Z. Li, J. Qin, J. Phys. Chem. B,. 113, 434, (2009).
[36] J. Bouchard, M. Belleteˆ te, G. Durocher, M. Leclerc, Macromolecules, 36, 4624, (2003).
[37] M. X. Zhu,W. Lu,N. Zhu, C. M. Che, Chem. Eur. J., 14, 9736, (2008).
[38] A. S. Shetty, E. B. Liu, R. J. Lachicotte, S. A. Jenekhe, Chem. Mater., 11, 2292, (1999).
[39] Z. Li, X. Lou, H. Yu, Z. Li, J. Qin, Macromolecules, 41, 7433, (2008).
[40] E. G. Tennyson, R. C. Smith, Inorg. Chem., 48, 11483, (2009).
[41] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 395,151, (1998).