簡易檢索 / 詳目顯示

研究生: 黃鼎倫
Huang, Ting-lun
論文名稱: 自組性聚合物週期結構的製程之研究
Fabrication of self-assembly periodic structure using electric field induced polymer instability
指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 69
中文關鍵詞: 奈米柱週期結構
外文關鍵詞: nano-pillar, periodic structure
相關次數: 點閱:138下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚合物薄膜在外加高電場的狀況下,且溫度高於聚合物本身的玻璃轉移溫度(Tg)時,由於電流體力學的擾動現象,會自行生成奈米柱結構的二維週期結構。在本論文中,將深入研究自組性聚合物週期結構的製程技術,利用調變時間、間距膜厚比、二板間距、膜厚、溫度等不同的環境條件,使得所形成的二維週期結構能有更均勻的奈米柱柱徑、柱與柱間距,以期運用於光子晶體的應用。
    研究結果顯示,奈米柱柱徑可用間距膜厚比及溫度來調變,隨著間距膜厚比越大、溫度越低(需高於Tg),柱徑會越小,而柱與柱間距與密度則可用二板間距、膜厚來調變,隨著二板間距越低或膜厚越厚,將可拉近柱與柱間距以加大密度,但二板間距若過低時,會造成結構生長空間不足而使得結構反應不完全,在膜厚過厚上,也會使得反應生成時間加大,易造成結構的不完全,經由上述的參數進行調變,在柱徑大小介於5m及800nm之間。而在最密排列上,最密可達1.6 x 109 1/cm2。除此之外,此一結構也可做為光罩來製作奈米洞陣列。同時在適當的調變實驗參數的情況下,也可以觀察到許多不同的圖案。另外一方面,由於聚合物有被拉高的現象,因此進一步希望能研究一個被拉高的平面光波導是否入射光在波導中的垂直方向上與水平方向上的光折射係數會不同,在本論文也提出一些初步成果。

    High electric field induces instability of the polymer thin film when the temperature exceeds the glass transition temperature of the polymer. Two-dimensional periodic structures in the form of nano-pillar array are fabricated. A periodic structure with uniform pillar diameter and period is crucial for the photonic crystal applications. Therefore, the effects from the environment including the processing time, the film thickness, the spacing between the electrodes and the ambient temperature, are systematically analyzed in this dissertation.
    Results from the experiments reveal that the diameter of the pillars can be altered by changing both the ratio between the spacer thickness to the film thickness and the ambient temperature. The diameter of pillars becomes smaller at a higher ratio value and a lower ambient temperature. The pillar density can be increased by decreasing the spacer thickness or by increasing the film thickness. However, too thin a film results in an incomplete pillar structure due to the lack of space for the process to continue. If film thickness is too thick, the time it takes to fully develop pillar structures is going to be very long. By carefully choosing the environmental parameters, periodic pillar structures with 5m to 800nm of diameters can be obtained. The density of the pillars is about 1.6 x 109 1/cm2. In addition, the periodic pillar arrays can be used as a mask to produce periodic metal hole arrays. Various interesting polymer patterns can also be observed by controlling the experimental conditions. Due to the fact that the polymer is been stretched in the vertical direction, it is interesting to study if the index of refraction is different along the vertical and horizontal directions of the polymer. Some preliminary results to fabricate planar waveguides with such stretched polymer are also presented in the context.

    目錄 中文摘要 I 英文摘要 III 誌謝 Ⅴ 目錄 Ⅵ 圖目錄 Ⅸ 第一章 導論 1 1-1前言 1 1-2表面張力 2 1-2-1 SAM表面效應 3 1-2-2 UV-Ozone表面效應 5 1-2-3親疏水性的影響 5 1-3薄膜穩定性探討 7 1-3-1 結構的形成 7 1-3-2 薄膜黏滯性的影響 9 1-3-3 表面壓力對薄膜影響 11 1-3-4 線性穩定分析 13 1-3-5 電場效應 16 第二章試片準備及實驗裝置與儀器 18 2-1 Sample準備 18 2-1-1 sample表面oxide蝕刻處理 18 2-1-2 sample表面塗佈薄膜及觀測 21 2-2聚合物溶液配置 23 2-2-1 基板準備 24 2-3 實驗架設 25 第三章結構製作與探討 28 3-1 基板表面處理 29 3-2 環境參數的影響 30 3-2-1 時間的影響 31 3-2-2 間距膜厚比例的影響 33 3-2-3 二板間距的影響 35 3-2-4 膜厚的影響 41 3-2-5 溫度的影響 46 第四章 結構之研究與分析 50 4-1 薄膜拉高效應 51 4-2 結構光罩 53 4-3 pattern 薄膜 57 4-4 圖騰內奈米柱結構 63 第五章 結論 65 5-1 結論 65 5-2 未來目標 67 REFERENCES 68 圖目錄 圖1.1 : (a)、此為水分子結構示意圖 2 圖1.1 : (b)、水在網線的分佈實際照片圖 2 圖1.2 : SiO3與silane發生SAM化學變化示意圖 3 圖1.3 : SiO3與silane發生SAM化學變化後,水氣蒸發示意圖 4 圖1.4 : 為水珠在固體表面的示意圖 6 圖1.5 : 二板間電場分佈示意圖 8 圖1.6 : 奈米柱生成過程示意圖 8 圖1.7 : 牛頓證明液體黏滯力裝置圖 9 圖1.8 : 溫度與表面張力數線圖 10 圖1.9 : 薄膜擾動示意圖 11 圖1.10 : 薄膜波動的簡略圖 14 圖1.11 : 電場效應電容示意圖 16 圖2.1: 二邊oxide等高結構製作流程圖 18 圖2.2 : 二邊oxide非等高結構製作流程圖 19 圖2.3 : 曝光機簡易圖 20 圖2.4 : 旋轉塗佈機示意圖 21 圖2.5 : 從鍍有薄膜的矽基板上,依厚度的不同所呈現的各色光 22 圖2.6 : 探針表面量測示意圖 23 圖2.7 : 實驗架構示意圖 25 圖2.8 : 結構架設圖 26 圖2.9 : 實驗架構側視圖 26 圖3.1 : 水珠在親疏水性的玻璃基板上分佈的情況 29 圖3.2 : 不同的時間點下的結構實驗圖 32 圖3.3 : 在間距膜厚比例不同情況下的結構視意圖 34 圖3.4 : 間距膜厚比例與奈米柱徑的數線圖 34 圖3.5 :二板間距對膜厚影響示意圖 36 圖3.6 : 二板間距對結構影響的實驗示意圖 37 圖3.7 : 在二板間距不同情況下,各間距所呈現的結構視意圖 39 圖3.8 : 二板間距與柱與柱間距的數線圖 40 圖3.9 : 二板間距與柱徑的數線圖 40 圖3.10 : 在膜厚不同情況下,各膜厚所呈現的結構視意圖 44 圖3.11 :膜厚與單位面積粒子數數線圖 45 圖3.12 : 膜厚與柱與柱間距數線圖 45 圖3.13 : 在相同條件下,不同的溫度下所產生的結構示意圖 47 圖3.14 : 在排列較緊密情況下,各個溫度的實驗結構圖 49 圖3.15 : 溫度與奈米柱徑數線圖 49 圖4.1 : 薄膜拉高及餵光示意圖 50 圖4.2 : 薄膜拉高的實驗結構圖 52 圖4.3: 表面粗度儀對結構高度的量測圖 52 圖4.4 : 金屬奈米洞結構製作流程圖 54 圖4.5 : 奈米洞製作過程的實驗結果圖 56 圖4.6 : 奈米洞結構的SEM圖 56 圖4.7 : 薄膜pattern配置流程圖 58 圖4.8 : 薄膜pattern配置實驗圖 59 圖4.9 : 製作薄膜pattern流程圖 60 圖4.10 : 製作薄膜pattern實驗圖 61 圖4.11 : 薄膜pattern高低量測圖 61 圖4.12 : 奈米柱拉高示意圖 62 圖4.13 : 奈米柱拉高實驗圖 62 圖4.14 : 各個結構型態 64

    [1] Fu-Kwun Hwang , surface tension of water , national taiwan normal university , 2002-07-20

    [2] Lo,Y.-S. , Specific Interactions Between Dopamine and Dopamine Receptors Studied by Atomic Force Microscopy , 24 January 2006

    [3] Stephan Harkema , Capillary Instabilities in Thin Polymer Films Mechanism of Structure Formation and Pattern Replication , groningen university , 2 auhustus 1997

    [4] L. Wu and S.Y. Chou, Dynamic modeling and scaling of nanostructure formation in the lithographically induced self-assembly and self-construction. Applied Physics Letters, 2003. 82(19): p. 3200

    [5] Leonard F. Pease, III and William B. Russel* , Limitations on Length Scales for Electrostatically Induced Submicrometer Pillars and Holes , Chemical Engineering, Princeton University , June 10, 2003

    [6] Zhiqun Lin, Tobias Kerle, Shenda M. Baker and David A. Hoagland , Electric field induced instabilities at liquidÕliquid interfaces , JOURNAL OF CHEMICAL PHYSICS , 17 August 2000

    [7] M.L. Williams, R.F. Landel, and J.D. Ferry, Mechanical properties of substances of high molecular weight .19. The temperature dependence of relaxation mechanism in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 1955. 77(14): p. 3701

    [8] L. Zhuang, Controlled Self-Assembly in Homopolymer and Diblock Copolymer, PhD Thesis, Princeton University: Princeton, 2002.

    [9] E. Schaeffer, Electrically induced structure formation and pattern transfer. Nature, 2000. 403(6772): p. 874.

    [10] Z. Suo and J. Liang, Theory of lithographically-induced self-assembly. Applied Physics Letters, 2001. 78(25): p. 3971.

    [11] Parikshit A.Deshpande , NANOLITHOGRAPHY IN THIN POLYMER FILMS USING GUIDED SELF-ASSEMBLY , PRINCETON UNIVERSITY , JANUARY 2005

    [12] E. Schaeffer, Electrohydrodynamic instabilities in polymer films. Europhysics Letters, 2001. 53(4): p. 518.

    [13] L.F. Pease and W.B. Russel, Limitations on Length Scales for Electrostatically Induced Submicrometer Pillars and Holes. Langmuir, 2004. 20: p. 795.

    [14] M¨onch, W. and Herminghaus, S. Elastic instability of rubber films between solid bodies. Europhys. Lett. 52(4), 525–531 (2001)p. 14

    [15] Landau, L. D. and Lifshitz, E. M. Electrodynamics of continuous media. Pergamon Press, Oxford, (1960)p. 39

    [16] S. Herminghaus, Dynamical instability of thin liquid films between conducting media. Physical Review Letters, 1999. 83: p. 2359.

    [17] L. Wu and S.Y. Chou, Dynamic modeling and scaling of nanostructure formationin the lithographically induced self-assembly and self-construction. Applied Physics Letters, 2003. 82(19): p. 3200

    [18] Erik Schaffer , Instabiliies in Thin Polymer Films : Structure Formation and Pattern Transfer , Konstanz Fachbereich fur Physik , im September 2001

    [19] International Technology Roadmap for Semiconductors.2003,
    Semiconductor Industry Association

    [20] A.A. Tseng ,Electron beam lithography in nanoscale fabrication : recent development. Ieee Transactions on Electronics Packaging Manufacturing , 2003.26(2) : p.141

    [21] Stephen Y. Chou, Lei Zhuang, and Linjie Guo , Lithographically induced self-construction of polymer microstructures for resistless patterning , APPLIED PHYSICS LETTERS, 4 January 1999

    下載圖示 校內:2008-07-26公開
    校外:2008-07-26公開
    QR CODE