簡易檢索 / 詳目顯示

研究生: 蘇胤瑋
Su, Yin-Wei
論文名稱: 紫外光及高級氧化程序對水中兩種常見Anabaenopeptin的降解研究
Degradation of Two Common Anabaenopeptins in Source Water by UV Light and Advanced Oxidation Process
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 88
中文關鍵詞: 穩定性臭氧AnabaenopeptinUV/ H2O2
外文關鍵詞: Anabaenopeptins, UV/ H2O2, Cyanopeptides, Ozone
相關次數: 點閱:57下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環境水體中因天然及人為汙染排放,使水中營養鹽過量而產生優養化,進而使水體中的藍綠菌大量生長造成藻華的發生。藍綠菌在生長的過程中會產生代謝物,其中一類為藍綠菌胜肽;藍綠菌胜肽中,除了微囊藻毒(Microcystin) 已被廣泛研究外,對其他類胜肽的研究多僅針對是毒性,與淨水程序中相關的研究更是缺乏。因此本研究將以環境水體中常見之藍綠菌胜肽Anabaenopeptins (Ap) A和B為目標,淨水處理常見氧化劑臭氧和氫氧自由基(UV/H2O2系統)進行APs的反應實驗、並計算反應速率常數,以評估淨水程序去除APs的有效性和可行性。此外,為了解APs在環境水體中的穩定性,本研究亦進行穩定性實驗以模擬APs的降解情況。
    在APs的降解過程中,與UV的反應遵守一階反應,而氫氧自由基和臭氧的反應均遵守二階反應定律。在氧化實驗結果中,Ap-B對氫氧自由基的氧化反應速率常數在7.21 ± 0.05×109 – 8.67 ± 1.00×109 M-1s-1的範圍,而Ap-A在pH值7時為1.07×1010 - 1.10×1010 M-1s-1。對於Ap-B對臭氧的氧化反應,反應速率常數在4.5×107 - 6.9×1010 M-1s-1的範圍,並與pH值呈線性關係,而Ap-A在pH值為7下的反應速率為4.36×108 M-1s-1。
    在APs的穩定性實驗中,採用鳥嘴潭人工湖之天然水,並進行濁度、溶解性有機碳(NPDOC)及螢光激發/發射陣列光譜(FEEM)等水質分析。水樣中加入已知濃度的Ap-A及Ap-B,並在不同的環境條件下進行10天的穩定性實驗。結果顯示,APs在所有因素下均表現出降解的現象。經過10天後,Ap-A在黑暗環境下的剩餘濃度為12%,可見光下為1%;Ap-B在暗中的剩餘濃度為42%,可見光下為5%。在戶外暴露情況下,Ap-A在8天便完全降解消失,Ap-B的剩餘濃度為98%,其半衰期分別為1.07天及2.61天。此外,將環境水樣進行滅菌後作為實驗背景溶液時,APs在所有環境下的降解速率均下降超過46%,這表示微生物可以在天然水體中降解APs。這些實驗結果證實水中的有機物及微生物的組成能夠影響環境水體中的藍綠藻毒素及胜肽的穩定性,APs在天然水體中會降解。

    Cyanobacterial blooms have the capacity to generate natural toxins in freshwater ecosystems worldwide, although the potential risks associated with numerous cyanobacterial metabolites remain largely unexplored. Anabaenopeptin A (Ap-A) and Anabaenopeptin B (Ap-B), representing a class of cyanopeptides, can be synthesized by prevalent cyanobacteria like Anabaena and Microcystis. Studies have revealed that Ap-A and Ap-B can exert toxic effects on the nematode Caenorhabditis elegans, including diminished reproduction, delayed hatching, reduced growth rate, shortened lifespan, and significant aging-related vulval integrity disruptions. However, there is currently a dearth of research regarding the treatment of these compounds in water treatment plants.
    This study undertook an investigation of the degradation and rate constants of APs through ozone and hydroxyl radical (UV/H2O2 system) oxidation to assess their effectiveness and feasibility. Additionally, experiments were conducted to assess the stability of APs in raw water under outdoor conditions, simulating degradation through direct photolysis. The oxidation of APs by hydroxyl radicals and ozone adhered to the second-order reaction rate law.
    In terms of oxidation outcomes, the rate constants for Anabaenopeptin B's oxidation by hydroxyl radicals range from 7.21±0.05×109 M-1S-1 to 8.67±1.00×109 M-1S-1, while those for Ap-A at pH 7 span from 7 are 1.07×1010 - 1.10×1010 M-1s-1. The rate constants for Anabaenopeptin B's oxidation by ozone vary from 4.5×107 M-1S-1 to 6.9×1010 M-1S-1, displaying a linear dependence on pH. For Ap-A at pH 7, the rate constant for oxidation by ozone is 4.36×108 M-1s-1.
    In the stability experiments, natural water samples spiked with known concentrations of Ap-A and Ap-B were analyzed over a span of 10 days under varying environmental conditions. Results indicate that APs exhibited degradation under all circumstances except during freeze storage (-4˚C). Following 10 days, the remaining concentration for Ap-A was 45.62% (4˚C storage), 88.37% (dark conditions), 98.84% (visible light exposure), and 100% (outdoor conditions). Similarly, Ap-B retained 24.06% (4˚C storage), 42.02% (dark conditions), 95.43% (visible light exposure), and 97.08% (outdoor conditions). Moreover, when water samples were autoclaved and employed as a background solution, the degradation of APs occurred at a slower pace compared to non-autoclaved groups. This observation suggests that microorganisms present in natural water are capable of consuming APs.

    摘要 i Extended Abstract iii 致謝 xi 目錄 xii 圖目錄 xvi 表目錄 xix 第一章 緒論 1 1-1 研究源起 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 藍綠菌藻華 3 2-1-1 藻華的發生與影響 3 2-1-2 藍綠菌胜肽(Cyanopeptide) 5 2-2 Anabaenopeptins 9 2-2-1 結構及特性 9 2-2-2 APs的毒性 10 2-2-3 出現頻率 11 2-3 藍綠菌胜肽的去除 13 2-3-1 胞內代謝物的去除 13 2-3-2 胞外代謝物的去除 14 2-4 淨水消毒程序 17 2-4-1 UV(Ultraviolet) 17 2-4-2 氫氧自由基(HO•) 18 2-4-3 臭氧 21 2-5 NOM特性 26 2-5-1 水中NOM對藻類代謝物的穩定性影響 26 2-5-2 DOM的特性及分析方法 27 第三章 實驗設備與方法 30 3-1 實驗架構流程 30 3-2 氫氧自由基氧化實驗 31 3-2-1 實驗流程 31 3-2-2 實驗試劑與設備 33 3-3 臭氧氧化還原實驗 34 3-3-1 競爭實驗 34 3-3-2 實驗試劑與設備 35 3-3-3 實驗方法 36 3-4 Anabaenopeptins在天然水中的穩定性實驗 37 3-4-1 實驗方法 37 3-4-2 實驗試劑與設備 37 3-5 競爭劑4-CG及氫氧自由基探針pCBA的分析 38 3-5-1 4-氯-2-甲氧基苯酚定量 38 3-5-1-1 實驗試劑與設備 38 3-5-2 氫氧自由基定量 39 3-5-2-1 實驗試劑與設備 39 3-5-2-2 氫氧自由基濃度推算 41 3-6 過氧化氫濃度分析 42 3-6-1 實驗試劑與設備 42 3-6-2 實驗方法 42 3-7 Anabaenopeptins的分析 43 3-7-1 實驗流程 43 3-7-2 實驗試劑與設備 44 3-8 天然有機物的分析 46 3-8-1 實驗流程 46 3-8-2 實驗試劑與設備 46 第四章 結果與討論 47 4-1 淨水程序降解APs 47 4-1-1 UV/ H2O2系統降解APs 47 4-1-1-1 過氧化氫 47 4-1-1-2 UV 49 4-1-1-3 氫氧自由基 52 4-1-2 臭氧對APs之氧化反應 57 4-1-3 Ap-A及Ap-B反應速率常數比較 60 4-1-3-1 UV光解 60 4-1-3-2 氫氧自由基氧化 61 4-1-3-3 臭氧氧化 63 4-2 APs的穩定性 65 4-2-1 APs在去離子水中的穩定性 65 4-2-2 APs在環境水體中的穩定性 68 4-2-3 APs在滅菌後之環境水體中的穩定性 75 第五章 結論與建議 79 5-1 結論 79 5-2 建議 81 參考文獻 82

    Azevedo, S. M., Carmichael, W. W., Jochimsen, E. M., Rinehart, K. L., Lau, S., Shaw, G. R., & Eaglesham, G. K. (2002). Human intoxication by microcystins during renal dialysis treatment in Caruaru—Brazil. Toxicology, 181, 441-446.
    Babica, P., Blaha, L., & Marsalek, B. (2005). Removal of Microcystins by Phototrophic Biofilms. A Microcosm Study (6 pp). Environmental Science and Pollution Research, 12, 369-374.
    Benitez, F. J., Beltrán-Heredia, J., Acero, J. L., & Rubio, F. J. (2000). Rate constants for the reactions of ozone with chlorophenols in aqueous solutions. Journal of hazardous materials, 79(3), 271-285.
    Bonjouklian, R., Smitka, T. A., Hunt, A. H., Occolowitz, J. L., Perun Jr, T. J., Doolin, L., Stevenson, S., Knauss, L., Wijayaratne, R., & Szewczyk, S. (1996). A90720A, a serine protease inhibitor isolated from a terrestrial blue-green alga Microchaete loktakensis. Tetrahedron, 52(2), 395-404.
    Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in Aqueous Solution. Journal of physical and chemical reference data, 17(2), 513-886.
    Cataldo, F. (2003). On the action of ozone on proteins. Polymer Degradation and Stability, 82(1), 105-114.
    Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37(24), 5701-5710.
    Chen, Y.-T., Chen, W.-R., & Lin, T.-F. (2018). Oxidation of cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) with chlorine, permanganate, ozone, hydrogen peroxide and hydroxyl radical. Water Research, 142, 187-195.
    Cheung, M. Y., Liang, S., & Lee, J. (2013). Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. Journal of Microbiology, 51, 1-10.
    Chorus, I., & Welker, M. (2021). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Taylor & Francis.
    Christensen, H., Sehested, K., & Corfitzen, H. (1982). Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. The Journal of Physical Chemistry, 86(9), 1588-1590.
    Cook, D., & Newcombe, G. (2002). Removal of microcystin variants with powdered activated carbon. Water Science and Technology: Water Supply, 2(5-6), 201-207.
    De, A. K., Chaudhuri, B., Bhattacharjee, S., & Dutta, B. K. (1999). Estimation of⋅ OH radical reaction rate constants for phenol and chlorinated phenols using UV/H2O2 photo-oxidation. Journal of hazardous materials, 64(1), 91-104.
    Dinh, Q. T., Munoz, G., Simon, D. F., Duy, S. V., Husk, B., & Sauvé, S. (2021). Stability issues of microcystins, anabaenopeptins, anatoxins, and cylindrospermopsin during short-term and long-term storage of surface water and drinking water samples. Harmful algae, 101, 101955.
    Edwards, C., Graham, D., Fowler, N., & Lawton, L. A. (2008). Biodegradation of microcystins and nodularin in freshwaters. Chemosphere, 73(8), 1315-1321.
    Elovitz, M. S., & von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept.
    Erickson, P. R., Moor, K. J., Werner, J. J., Latch, D. E., Arnold, W. A., & McNeill, K. (2018). Singlet oxygen phosphorescence as a probe for triplet-state dissolved organic matter reactivity. Environmental Science & Technology, 52(16), 9170-9178.
    Feng, X., Rong, F., Fu, D., Yuan, C., & Hu, Y. (2006). Photocatalytic degradation of trace-level of Microcystin-LR by nano-film of titanium dioxide. Chinese Science Bulletin, 51, 1191-1198.
    Filatova, D., Jones, M. R., Haley, J. A., Núñez, O., Farré, M., & Janssen, E. M.-L. (2021). Cyanobacteria and their secondary metabolites in three freshwater reservoirs in the United Kingdom. Environmental Sciences Europe, 33, 1-11.
    Gkelis, S., Harjunpää, V., Lanaras, T., & Sivonen, K. (2005). Diversity of hepatotoxic microcystins and bioactive anabaenopeptins in cyanobacterial blooms from Greek freshwaters. Environmental Toxicology: An International Journal, 20(3), 249-256.
    Glaze, W. H., Kang, J.-W., & Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation.
    Haag, W. R., & Yao, C. D. (1992). Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environmental Science & Technology, 26(5), 1005-1013.
    Hallegraeff, G. (2003). Harmful algal blooms: a global overview. Manual on harmful marine microalgae, 33, 1-22.
    He, X., de la Cruz, A. A., Hiskia, A., Kaloudis, T., O'Shea, K., & Dionysiou, D. D. (2015). Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): Influence of variable amino acids on the degradation kinetics and reaction mechanisms. Water Research, 74, 227-238.
    He, X., Liu, Y.-L., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D., Lenhart, J. J., Mouser, P. J., Szlag, D., & Walker, H. W. (2016). Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful algae, 54, 174-193.
    He, X., Pelaez, M., Westrick, J. A., O’Shea, K. E., Hiskia, A., Triantis, T., Kaloudis, T., Stefan, M. I., Armah, A., & Dionysiou, D. D. (2012). Efficient removal of microcystin-LR by UV-C/H2O2 in synthetic and natural water samples. Water Research, 46(5), 1501-1510.
    Ho, L., Lambling, P., Bustamante, H., Duker, P., & Newcombe, G. (2011). Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies. Water Research, 45(9), 2954-2964.
    Hoeger, S. J., Dietrich, D. R., & Hitzfeld, B. C. (2002). Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment. Environmental health perspectives, 110(11), 1127-1132.
    Hoeger, S. J., Hitzfeld, B. C., & Dietrich, D. R. (2005). Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicology and applied pharmacology, 203(3), 231-242.
    Hoigné, J. (1998). Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. Quality and treatment of drinking water II, 83-141.
    Hoigné, J., & Bader, H. (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water—I: non-dissociating organic compounds. Water Research, 17(2), 173-183.
    Hoigné, J., & Bader, H. (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water—II: dissociating organic compounds. Water Research, 17(2), 185-194.
    Hou, X., Feng, L., Dai, Y., Hu, C., Gibson, L., Tang, J., Lee, Z., Wang, Y., Cai, X., & Liu, J. (2022). Global mapping reveals increase in lacustrine algal blooms over the past decade. Nature Geoscience, 15(2), 130-134.
    Huber, M. M., Canonica, S., Park, G.-Y., & Von Gunten, U. (2003). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology, 37(5), 1016-1024.
    Hudson, N., Baker, A., & Reynolds, D. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River research and applications, 23(6), 631-649.
    Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471-483. https://doi.org/10.1038/s41579-018-0040-1
    Huo, X., Chang, D.-W., Tseng, J.-H., Burch, M. D., & Lin, T.-F. (2015). Exposure of Microcystis aeruginosa to hydrogen peroxide under light: kinetic modeling of cell rupture and simultaneous microcystin degradation. Environmental Science & Technology, 49(9), 5502-5510.
    Ishii, H., Nishijima, M., & Abe, T. (2004). Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium. Water Research, 38(11), 2667-2676.
    Janssen, E. M.-L. (2019). Cyanobacterial peptides beyond microcystins–A review on co-occurrence, toxicity, and challenges for risk assessment. Water Research, 151, 488-499.
    Kim, M. S., & Lee, C. (2019). Ozonation of microcystins: kinetics and toxicity decrease. Environmental Science & Technology, 53(11), 6427-6435.
    Kull, T. P., Sjövall, O. T., Tammenkoski, M. K., Backlund, P. H., & Meriluoto, J. A. (2006). Oxidation of the cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide: influence of natural organic matter. Environmental Science & Technology, 40(5), 1504-1510.
    Kurt, U., Apaydin, O., & Gonullu, M. T. (2007). Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process. Journal of hazardous materials, 143(1-2), 33-40.
    Lalezary, S., Pirbazari, M., & McGuire, M. J. (1986). Oxidation of five earthy‐musty taste and odor compounds. Journal‐American Water Works Association, 78(3), 62-69.
    Legrini, O., Oliveros, E., & Braun, A. (1993). Photochemical processes for water treatment. Chemical reviews, 93(2), 671-698.
    Lenz, K. A., Miller, T. R., & Ma, H. (2019). Anabaenopeptins and cyanopeptolins induce systemic toxicity effects in a model organism the nematode Caenorhabditis elegans. Chemosphere, 214, 60-69.
    Matthijs, H. C., Visser, P. M., Reeze, B., Meeuse, J., Slot, P. C., Wijn, G., Talens, R., & Huisman, J. (2012). Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Research, 46(5), 1460-1472.
    Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment international, 59, 303-327.
    Meulemans, C. (1987). The basic principles of UV–disinfection of water.
    Minakata, D., Li, K., Westerhoff, P., & Crittenden, J. (2009). Development of a group contribution method to predict aqueous phase hydroxyl radical (HO•) reaction rate constants. Environmental Science & Technology, 43(16), 6220-6227.
    Monteiro, P. R., do Amaral, S. C., Siqueira, A. S., Xavier, L. P., & Santos, A. V. (2021). Anabaenopeptins: What we know so far. Toxins, 13(8), 522.
    Moon, B.-R., Kim, T.-K., Kim, M.-K., Choi, J., & Zoh, K.-D. (2017). Degradation mechanisms of Microcystin-LR during UV-B photolysis and UV/H2O2 processes: byproducts and pathways. Chemosphere, 185, 1039-1047.
    Newcombe, G. (2002). Removal of algal toxins from drinking water using ozone and GAC. American Water Works Association.
    Onstad, G. D., Strauch, S., Meriluoto, J., Codd, G. A., & von Gunten, U. (2007). Selective Oxidation of Key Functional Groups in Cyanotoxins during Drinking Water Ozonation. Environmental Science & Technology, 41(12), 4397-4404. https://doi.org/10.1021/es0625327
    Peter, A., & Von Gunten, U. (2007). Oxidation kinetics of selected taste and odor compounds during ozonation of drinking water. Environmental Science & Technology, 41(2), 626-631.
    Pietsch, J., Bornmann, K., & Schmidt, W. (2002). Relevance of intra‐and extracellular cyanotoxins for drinking water treatment. Acta hydrochimica et hydrobiologica, 30(1), 7-15.
    Pivokonsky, M., Naceradska, J., Kopecka, I., Baresova, M., Jefferson, B., Li, X., & Henderson, R. (2016). The impact of algogenic organic matter on water treatment plant operation and water quality: a review. Critical Reviews in Environmental Science and Technology, 46(4), 291-335.
    Posch, T., Köster, O., Salcher, M. M., & Pernthaler, J. (2012). Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change, 2(11), 809-813.
    Qiao, R.-P., Li, N., Qi, X.-H., Wang, Q.-S., & Zhuang, Y.-Y. (2005). Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide. Toxicon, 45(6), 745-752.
    Ribeiro, A. R., Nunes, O. C., Pereira, M. F., & Silva, A. M. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment international, 75, 33-51.
    Rodríguez, E., Onstad, G. D., Kull, T. P., Metcalf, J. S., Acero, J. L., & von Gunten, U. (2007). Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Research, 41(15), 3381-3393.
    Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., & Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in ecology & evolution, 8(8), 275-279.
    Schreuder, H., Liesum, A., Lönze, P., Stump, H., Hoffmann, H., Schiell, M., Kurz, M., Toti, L., Bauer, A., & Kallus, C. (2016). Isolation, co-crystallization and structure-based characterization of anabaenopeptins as highly potent inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa). Scientific Reports, 6(1), 1-9.
    Sedmak, B., Carmeli, S., & Eleršek, T. (2008). “Non-toxic” cyclic peptides induce lysis of cyanobacteria—an effective cell population density control mechanism in cyanobacterial blooms. Microbial ecology, 56, 201-209.
    Sellers, R. M. (1980). Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate. Analyst, 105(1255), 950-954.
    Sharma, V. K., & Rokita, S. E. (2012). Oxidation of amino acids, peptides, and proteins: kinetics and mechanism. John Wiley & Sons.
    Song, K., Fang, C., Jacinthe, P.-A., Wen, Z., Liu, G., Xu, X., Shang, Y., & Lyu, L. (2021). Climatic versus anthropogenic controls of decadal trends (1983–2017) in algal blooms in lakes and reservoirs across China. Environmental Science & Technology, 55(5), 2929-2938.
    Song, W., Xu, T., Cooper, W. J., Dionysiou, D. D., Cruz, A. A. d. l., & O ‘Shea, K. E. (2009). Radiolysis studies on the destruction of microcystin-LR in aqueous solution by hydroxyl radicals. Environmental Science & Technology, 43(5), 1487-1492.
    Sorlini, S., Collivignarelli, C., Carnevale Miino, M., Caccamo, F. M., & Collivignarelli, M. C. (2020). Kinetics of microcystin-LR removal in a real lake water by UV/H2O2 treatment and analysis of specific energy consumption. Toxins, 12(12), 810.
    Staehelin, J., Buehler, R., & Hoigné, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 2. Hydroxyl and hydrogen tetroxide (HO4) as chain intermediates. The Journal of Physical Chemistry, 88(24), 5999-6004.
    Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine chemistry, 82(3-4), 239-254.
    Thirumavalavan, M., Hu, Y.-L., & Lee, J.-F. (2012). Effects of humic acid and suspended soils on adsorption and photo-degradation of microcystin-LR onto samples from Taiwan reservoirs and rivers. Journal of hazardous materials, 217, 323-329.
    Thurman, E. M. (2012). Organic geochemistry of natural waters (Vol. 2). Springer Science & Business Media.
    Tsuji, K., Naito, S., Kondo, F., Ishikawa, N., Watanabe, M. F., Suzuki, M., & Harada, K.-i. (1994). Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerization. Environmental Science & Technology, 28(1), 173-177.
    USEPA. (2019). Cyanobacteria and Cyanotoxins:Information for Drinking Water Systems. https://www.epa.gov/sites/default/files/2019-07/documents/cyanobacteria_and_cyanotoxins_fact_sheet_for_pws_final_06282019.pdf.pdf
    Vilhunen, S., Puton, J., Virkutyte, J., & Sillanpää, M. (2011). Efficiency of hydroxyl radical formation and phenol decomposition using UV light emitting diodes and H2O2. Environmental technology, 32(8), 865-872.
    Von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 37(7), 1443-1467.
    Welker, M., & Steinberg, C. (1999). Indirect photolysis of cyanotoxins: one possible mechanism for their low persistence. Water Research, 33(5), 1159-1164.
    Welker, M., & Von Döhren, H. (2006). Cyanobacterial peptides—nature's own combinatorial biosynthesis. FEMS microbiology reviews, 30(4), 530-563.
    Westrick, J. A., Szlag, D. C., Southwell, B. J., & Sinclair, J. (2010). A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Analytical and bioanalytical chemistry, 397, 1705-1714.
    WHO. (2017). Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum.
    Wörmer, L., Huerta-Fontela, M. a., Cires, S., Carrasco, D., & Quesada, A. (2010). Natural photodegradation of the cyanobacterial toxins microcystin and cylindrospermopsin. Environmental Science & Technology, 44(8), 3002-3007.
    Xu, H., Cooper, W. J., Jung, J., & Song, W. (2011). Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. Water Research, 45(2), 632-638.
    Zafiriou, O. C. (1974). Sources and reactions of OH and daughter radicals in seawater. Journal of Geophysical Research, 79(30), 4491-4497.
    Zepp, R. G., & Cline, D. M. (1977). Rates of direct photolysis in aquatic environment. Environmental Science & Technology, 11(4), 359-366.
    行政院環保署. (2021). 2021環境水質監測年報.
    翁水珠. (2021). Oxidation of cyanopepetide Anabaenopeptin-B and Microginin 527 in source water with chlorine and permanganate
    陳氏, 芳. (2021). 以微波強化高級氧化處理異丙醇廢水
    經濟部水利署. (2021). 水庫有害藻類監測技術創新與提升及新型藻毒素處理評析研究

    下載圖示 校內:2024-07-31公開
    校外:2024-07-31公開
    QR CODE