簡易檢索 / 詳目顯示

研究生: 湯為敦
Tang, Wei-Dun
論文名稱: 結合低程式碼系統與混合整數線性規劃發展雲端排程系統
The Development of a Cloud-Based Scheduling System Combining Low-Code System and Mixed-Integer Linear Programming
指導教授: 楊大和
Yang, Ta-Ho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 101
中文關鍵詞: 低程式碼排程混合整數線性規劃微生物發酵資訊流圖
外文關鍵詞: Low-code platform, Scheduling, Mixed-integer linear programming (MILP), Microbial fermentation, Information stream mapping (iSM)
相關次數: 點閱:10下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在結合低程式碼平台與數學最佳化技術,開發一套應用於生技製藥產業的雲端排程系統。過去企業多仰賴紙本作業或市售套裝軟體進行排程管理,惟此類系統在高變異、高客製化場域中導入與維護成本高,亦難以彈性應對現場變動。本研究參考JJC(Jidoka-JIT Cycle)理念,導入低程式碼工具強化資訊流可視性與排程回饋機制,以實現簡易智慧化。以某微生物發酵代工廠為實證對象,運用Microsoft Power Platform(包含Power Apps、Power Automate、SharePoint與Power BI)建構具雲端性、即時性與可視化的排程架構,支援現場作業回報與異常顯示。透過iSM(Information Stream Mapping)資訊流程分析與五項指標進行量化評估,結果顯示資訊傳遞自動化與集中性大幅提升,其中排程作業的Scheduling Lead Time(含製程前準備、工單建立與排程核對等流程)由120分鐘縮短至30分鐘,顯著改善決策回應速度與跨部門溝通效率。本研究進一步針對具「齊料」特性的益生菌產品建構MILP(Mixed-Integer Linear Programming)模型,以最小化總完工時間(makespan)為目標,考量設備資源與工時差異進行求解。實驗結果顯示優化排序可使總完工時間縮短約10%,平均閒置時間亦下降約33%,顯著提升資源使用效率與整體排程效能。綜合上述,本研究提出一套融合低程式碼系統建構與最佳化模型的排程解決方案,經過10個月現場驗證,具備彈性、高應用性與實務導入價值。

    This study presents a cloud-based scheduling system for the biopharmaceutical industry by integrating low-code platforms with mathematical optimization. Traditional paper-based operations or commercial scheduling software often involve high implementation and maintenance costs, and lack flexibility in high-variability, highly customized environments. Adopting the Jidoka-JIT Cycle (JJC) concept, the system was developed on Microsoft Power Platform (Power Apps, Power Automate, SharePoint, Power BI) to provide real-time progress reporting, abnormality alerts, and enhanced information transparency.
    Using a microbial fermentation contract manufacturing plant as a case study, the system was evaluated through Information Stream Mapping (iSM) and five key performance indicators. Results show that automation and centralization improved significantly, while scheduling lead time—including preprocessing, work order creation, and verification—was reduced from 120 to 30 minutes, greatly improving decision response time and cross-departmental communication. Furthermore, a Mixed-Integer Linear Programming (MILP) model was developed to address the “simultaneous readiness” requirement for multi-strain probiotic products, minimizing total completion time under equipment constraints and process time differences. Experimental results indicate reductions of ~10% in total completion time and ~33% in average idle time. A 10-month field validation confirms the system’s flexibility, applicability, and practical deployment value.

    目錄 vii 表目錄 xii 圖目錄 xiii 1 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究架構 4 2 文獻探討 5 2.1 間斷式生產流程 6 2.1.1 產品流程矩陣 6 2.1.2 微生物發酵產業生產模式 7 2.2 自働生產管理環(Jidoka-JIT Cycle) 8 2.2.1 自働生產管理環 1.0 8 2.2.2 自働生產管理環 2.0 9 2.2.3 自働生產管理環 3.0 10 2.3 數位系統必要但非充分 11 2.4 低程式碼開發平台 12 2.4.1 軟體即服務 12 2.4.2 低碼AI工具輔助開發 14 2.4.3 企業投資與市場趨勢 15 2.5 Microsoft Power Platform 15 2.5.1 Power Apps 16 2.5.2 Power Automate 17 2.5.3 Power BI 18 2.5.4 SharePoint 19 2.6 iSM資訊流分析 20 2.6.1 iSM績效指標 21 2.6.2 iSM圖繪製方式與符號說明 23 2.7 混合整數線性規劃在排程優化中的應用 25 2.7.1 易腐化產品與品質時效限制 25 2.7.2 齊料特性與同步完工需求 26 3 問題分析 27 3.1 案例公司介紹 27 3.2 管理策略 29 3.3 現況問題 30 3.3.1 高度紙本作業 30 3.3.2 工時缺乏標準 31 3.4 繪製iSM現況圖 32 4 系統建構 34 4.1 雲端資料庫建構與整合 35 4.1.1 SharePoint協作資料平台 35 4.1.2 Dataverse暫存資料庫 36 4.2 Power Apps雲端排程APP 36 4.2.1 使用者介面設計(UI) 37 4.2.2 排程甘特圖功能設計 38 4.2.3 總覽介面與安燈顏色管理 40 4.2.4 設備狀態即時監控模組 42 4.2.5 良率登記與製程異常定位模組 43 4.3 Power Automate自動化流程 44 4.3.1 雲端資料自動轉移流程設計 45 4.3.2 異常主動通知 46 4.4 Power BI雲端即時戰情室 47 4.4.1 工時差異分析儀表板 48 4.4.2 效率分析儀表板 49 4.4.3 品質分析儀表板 51 4.4.4 OEE分析儀表板 52 4.5 效益分析 54 4.6 小結 56 5 排程優化 58 5.1 模型輸入建構 59 5.1.1 核心設備與作業流程 59 5.1.2 產品生產模式 60 5.1.3 整合工時資料 61 5.2 數學模型 62 5.2.1 目標式:最小化總完工時間 62 5.2.2 參數與決策變數 63 5.2.3 限制式 65 5.2.4 模型假設與限制 66 5.3 求解方法 67 5.3.1 求解工具 68 5.3.2 數學模型程式化 68 5.4 結果呈現 70 5.4.1 視覺化與成效驗證 71 5.4.2 結果成因分析 73 6 結論與未來建議 76 6.1 研究結論 76 6.2 未來建議 77 參考文獻 79 附錄A:MILP完整程式碼 83

    楊大和(2024)。數位與精實的融合─簡易智慧化。「2024年精實企業-數位與精實融合」論壇,經濟部產業發展署,2024年10月22日,裕元花園酒店,台中。
    楊大和(2025)。精實系統在AI驅動平台的應用案例。「2025數位化精實管理TPS補助計畫」說明會,經濟部產業發展署,2025年2月12日,集思新烏日會議中心,台中。
    楊大和、李兆華(2021)。數位轉型是持續改善的過程—自働生產管理環為例。工業工程雜誌。取自:https://sites.google.com/ciie.org.tw/column220901 (2025/04/09取得)
    葉宏謨(2022)。【CDO專欄】低碼程式與公民開發者。CIO Taiwan。取自:https://www.cio.com.tw/cdo-column-low-code-programs-and-citizen-developers/ (2025/04/09取得)
    高德拉特(Goldratt, E. M.)、斯拉根海默(Schragenheim, E.)、柏德克(Ptak, C. A.)(2000)。仍然不足夠:ERP加TOC的企業電腦化新境界(第一版)。天下遠見。
    Bei, H., Yu, M., Yang, T., & Murcio, R. (2025). Optimization of intermodal transportation routes for perishable goods considering customer satisfaction. Research in Transportation Business & Management, 59, 101261.
    Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business strategy: Toward a next generation of insights. MIS Quarterly, 37(2), 471–482.
    Bikka, S. P. (2025). Workflow automation engines: Driving innovation in cloud-native and AI-enhanced business processes. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 11(1), 282–289.
    Bock, A. C., & Frank, U. (2021). Low-Code Platform. Business & Information Systems Engineering, 63, 733–740.
    Devaraju, S., & Boyd, T. (2021). AI-augmented workforce scheduling in cloud-enabled environments. World Journal of Advanced Research and Reviews. 12(3), 674–680.
    Gupta, D., & Benjaafar, S. (2004). Make-to-Order, Make-to-Stock, or Delay Product Differentiation? A Common Framework for Modeling and Analysis. IIE Transactions, 36(6), 529–546.
    Hastuti, R. P., Yuliando, H., & Aziz, I. W. F. (2015). Production Scheduling Using Mixed Integer Programming: Case of Bread Small and Medium Enterprise at Yogyakarta. Agriculture and Agricultural Science Procedia, 3, 211–215.
    Holmström, J., Ketokivi, M., & Hameri, A.-P. (2020). Digital operations and the impact of digitalization on the operations management research agenda. International Journal of Operations & Production Management, 40(6), 725–747.
    Hou, Y., Bai, Y., & Hu, H. (2018). Research on multi-objective fresh food delivery path optimization based on elite ant colony algorithm. Practice and Cognition of Mathematics, 48(20), 50–57.
    IDC. (2024). Global Software Development and AI Market Forecast 2024. Retrieved April 16, 2025, from https://www.idc.com
    Juhás, G., Molnár, L., Juhásová, A., Ondrisová, M., Mladoniczky, M., & Kovácik, T. (2022). Low-code platforms and languages: The future of software development. In 2022 20th International Conference on Emerging eLearning Technologies and Applications (ICETA), 286–293.
    Kok, C., Tan, H. R., Ho, C. K., Lee, C., Teo, T. H., & Tang, H. (2024). A comparative study of AI and low-code platforms for SMEs: Insights into Microsoft Power Platform, Google AutoML and Amazon SageMaker. In 2024 IEEE 17th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 50–53.
    Microsoft. (2025). Microsoft Power Platform: Empower everyone to build solutions. Retrieved April 16, 2025, from https://learn.microsoft.com/en-us/power-platform/
    Monfared, M., & Yang, J. (2007). Design of integrated manufacturing planning, scheduling and control systems: A new framework for automation. The International Journal of Advanced Manufacturing Technology, 33, 545–559.
    Roh, P., Kunz, A., & Wegener, K. (2019). Information stream mapping: Mapping, analysing and improving the efficiency of information streams in manufacturing value streams. CIRP Journal of Manufacturing Science and Technology, 25, 1–13.
    Sanchis, R., García-Perales, Ó., Fraile, F., & Poler, R. (2019). Low-code as enabler of digital transformation in manufacturing industry. Applied Sciences, 10(1), 12.
    Soman, C. A., Van Donk, D. P., & Gaalman, G. (2004). Combined Make-to-Order and Make-to-Stock in a Food Production System. International Journal of Production Economics, 90(2), 223–235.
    Stanford Institute for Human-Centered Artificial Intelligence. (2024). AI Index Report 2024. Stanford University. Retrieved April 16, 2025, from https://hai.stanford.edu/ai-index
    Yarbrough, A. C., Harris, G. A., & Purdy, G. T. (2022). Improving the flow of data and information in manufacturing. Manufacturing Letters, 32, 1-4.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE