簡易檢索 / 詳目顯示

研究生: 王薪惟
Wang, Shin-Wei
論文名稱: 應用表面改質技術以控制微流道的電滲流動行為
The Application of a Surface Modification Technique on Controlling the Electroosmosis Flow Behavior in Microchannels
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 111
中文關鍵詞: 匯聚流電滲流微管道界面電位
外文關鍵詞: Zeta potential, Microchannel, Focused flow, Electroosmosis
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以自組裝單分子層技術改質微管道壁面,並使用電滲流驅動流體的方式,設計能匯聚樣品的爪型微管道裝置。首先,藉由表面改質使微管道壁面帶正電,並利用電流觀測法評估改質面的ζ-potential值。然後找出適當的操作條件,使受改質壁面的正ζ-potential值與受氧電漿照射壁面的負ζ-potential值,兩者的絕對值相近。在這操作條件下,觀察螢光粒子流經爪型微管道轉角的軌跡,並與CFD-ACE+軟體模擬出的流場比較,結果顯示螢光粒子不會因直流介電泳作用而改變流動軌跡。因此,當匯聚的螢光粒子流經爪型管道轉角時,直流介電泳的作用並不會影響匯聚效果。此外,藉由調控側支管與中央進料管內緩衝溶液的濃度比,可改變微管道裝置內的電場強度,以控制支管與中央管的電滲流流速比。當兩者的流速比越高時,匯聚流的寬度會越窄,因而可以達到操控匯聚流寬度的目的。

    In this study, a claw-shaped microchannel device for focusing the sample flow was designed with the surface modification of the microchannel by the self-assembled monolayer technique and with the fluid flow driven by the electroosmosis. The positively charged surface of a microchannel was fabricated first by the surface modification, and the zeta potential of the modified surface was evaluated by the current-monitoring method. The proper operation condition, at which the absolute values of the positive zeta potential of the modified surface and the negative zeta potential of the surface exposed to oxygen plasma were close, was then found. Under this operation condition, the tracks of fluorescence particles flowing through the corner of the claw-shaped microchannel device were observed and compared with the fluid field obtained by the simulation with the CFD-ACE+ software. The results indicated that the flowing tracks of the fluorescence particles were not varied by the DC-dielectrophoresis. Therefore, the focusing efficiency was not influenced by the DC-dielectrophoresis when the particles flowed through the corner of the claw-shaped microchannel device. Moreover, the electric field in the microchannel device could be changed by adjusting the concentration ratio of the buffer solutions in the side and central channels, and thus the velocity ratio of the electroosmotic flows in the side and central channels could be controlled. When the velocity ratio became higher, the width of the focused flow was smaller, and the purpose of controlling the width of the focused flow could be attained.

    摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 1 1.2.1電雙層 1 1.2.2電滲流 2 1.2.3電泳 3 1.2.4直流電介電泳 4 1.2.5影響ζ-potential的因素 5 1.2.6電流觀測法與理論模式 6 1.2.7自組裝單分子層 9 1.2.8 Y型微流體幫浦 10 1.2.9利用直流介電泳分離大小不同的粒子 10 1.2.10在微管道中的匯聚流動 11 1.2.11統御方程式 13 1.3研究動機與目的 14 第二章 實驗 34 2.1藥品 34 2.2光罩設計 34 2.3光微影製程 35 2.3.1晶片清洗 35 2.3.2光阻塗佈 35 2.3.3軟烤 36 2.3.4曝光 37 2.3.5曝後烤 38 2.3.6顯影 38 2.3.7硬烤 38 2.3.8厚度測量 39 2.4微流道裝置 39 2.4.1材料 39 2.4.2氧電漿處理 40 2.4.3微流道製作 40 2.4.4微流道表面改質 41 2.5緩衝溶液 41 2.6螢光粒子 42 2.7模擬軟體 42 2.8實驗裝置與方法 43 2.8.1電流觀測法實驗 43 2.8.2爪型微管道內流體流動的觀察與模擬 44 2.9儀器 46 2.9.1影像系統 46 2.9.2電漿清潔器 46 2.9.3雷射光散射法界面電位分析儀 46 2.9.4導電度計 47 2.9.5高壓電源供應器 47 第三章 結果與討論 67 3.1經改質之PDMS壁面的ζ-potential 67 3.1.1壁面的ζ-potential 67 3.1.2壁面ζ-potential的調控 68 3.1.3經氧電漿處理之壁面的ζ-potential 70 3.2爪型微流道的設計與模擬 72 3.2.1流道設計 72 3.2.2格點測試 74 3.2.2.1爪型微流道 75 3.2.2.2匯聚型爪型微流道 75 3.2.3爪型微流道內螢光粒子軌跡的模擬與觀察 76 3.2.4匯聚型爪型微流道的匯聚效果 79 3.2.5電滲驅動與壓力趨動匯聚流的比較 81 第四章 結論 106 第五章 參考文獻 108 自述 111

    Bransky, A., Korin, N., and Levenberg, S., “Experimental and theoretical study of selective protein deposition using focused micro laminar flows,” Biomed. Microdevices, 10, 421-428, 2008.

    Cho, Y.-H., and Lee, D.W., “A continuous electrical cell lysis device using a low dc voltage for a cell transport and rupture,” Sens. Actuators B, 124, 84-89, 2007.

    Gargiuli, J., Shapiro, E., Gulhane, H., Nair, G., Drikakis, D., and Vadgama, P., “Microfluidic systems for in situ formation of nylon 6,6 membranes,” J. Membr. Sci., 282, 257-265, 2006.

    Huang, X., Gordon, M.J., and Zare, R.N., “Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis,” Anal. Chem., 60, 1837-1838, 1988.

    Kang, Y., Li, D., Kalams, S.A., and Eid, J.E., ”DC-dielectrophoretic separation of biological cells by size,” Biomed. Microdevices, 10, 243-249, 2008.

    Kim, H.C., Chung, T.D., and Joo, S., “A rapid field-free electroosmotic micropump incorporating charged microchannel surfaces,” Sens. Actuators B, 123, 1161-1168, 2006.

    Kirby, B.J. and Hasselbrink, Jr. E.F., “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on seprations,” Electrophoresis, 25, 187-202, 2004a.

    Kirby, B.J. and Hasselbrink, Jr. E.F., “Zeta potential of microfluidic substrates: 2. Data for polymers,” Electrophoresis, 25, 203-213, 2004b.

    Lee, G.-B., Hung, C.-I, Ke, B.-J., Huang, G.-R., Hwei, B.-H., and Lai, H.-F., “Hydrodynamic focusing for a micromachined flow cytometer,” J. Fluids Eng., 123, 672-679, 2001.

    Lee, G.-B., Yang, R.-J., Chang, C.-C., and Huang, S.-B., “A new focusing model and switching approach for electrokinetic flow inside microchannels,” J. Micromech. Microeng., 15, 2141-2148, 2005.

    Li, D., Barbulovic-Nad, I., Xuan, X., and Lee, J. S. H., “DC-dielectrophoretic separation of microparticles using an oil droplet obstacle,” Lab. Chip, 6, 274-279, 2006.

    Locascio, L. E., Perso C. E., and Lee, C. S., “Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate,” J. Chromatogr. A, 857, 275-284, 1999.

    Probstein, R.F., Physicochemical Hydrodynamics, John Wiley & Sons, Inc., New Jersey, 2003.

    Ren, L., Escobedo-Canseco, C., and Li, D., “A new method of evaluating the average electro-osmotic velocity in microchannels,” J. Colloid Interface Sci., 250, 238-242, 2002.

    Ren, L., Masliyah, J., and Li, D., “Experimental and theoretical study of the displacement process between two electrolyte solutions in a microchannel,” J. Colloid Interface Sci., 257, 85-92, 2003.

    Sze, A., Erickson, D., Ren, L., and Li, D., “ Zeta-potential measurement using the smoluchowski equation and the slope of the current-time relationship in electroosmotic flow,” J. Colloid Interface Sci., 261, 402-410, 2003.

    Ulman, A., An Introduction to Ultrathin Organic Films, Academic Press, New York, 1991.

    Viovy, J.-L., Pallandre, A., de Lambert, B., Attia, R., and Jonas, A. M., ”Surface treatment and characterization Perspectives to electrophoresis and lab-on-chips,” Electrophoresis, 27, 584-610, 2006.

    Whitesides, G.M., Kenis, P.J. A., Ismagilov, R.F., Takayama, S., Li, S., and White, H.S., “Fabrication inside microchannels using fluid flow,” Acc. Chem. Res., 33, 841-847, 2000.

    郭安聰,具不同帶電面之微管道壁面ζ-potential的量測,成功大學化學工程學系碩士論文,2007。

    下載圖示 校內:立即公開
    校外:2009-08-10公開
    QR CODE