簡易檢索 / 詳目顯示

研究生: 譚世一
Tan, Shih-I
論文名稱: 以合成生物學與 CRISPR/Cas9 系統 開發大腸桿菌作為全細胞生物感測器及綠色生物工廠
Tailoring Echerichia coli as whole-cell biosensor and green biorefinery via synthetic biology and CRISPR/Cas9 system
指導教授: 吳意珣
Ng, I-Son
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 263
中文關鍵詞: 合成生物學大腸桿菌T7 RNA 聚合酶CRISPR 技術生物固碳碳酸酐酶ALA 合成酶賴氨酸脫羧酶加氧酶磷酸二氫激酶
外文關鍵詞: synthetic biology, Escherichia coli, T7 RNA polymerase, CRISPR technology, biological carbon fixation, carbonic anhydrase, 5-aminolevulinic synthetase, lysine decarboxylase, RuBisCO, PRK
相關次數: 點閱:99下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用合成生物學技術開發大腸桿菌的多功能應用。合成生物學的中心思維是精準且有效調控生物的轉錄及轉譯,以最佳的基因、最有效率的工具在最佳的生物底盤上快速實現醫、農、工、食品、能源及生物材料等領域的應用。本論文中,我們欲釐清且解決幾個科學問題:(一)基於T7系統建立可廣義使用的基因放大器;(二)提昇葡萄糖分子之生物感測靈敏度於醫療診斷;(三)以CRISPRi來達成酶活篩選的平台;(四)同步固碳與生產高價化學品的技術。
    近年來,開發非自生的轉錄及轉譯系統越來越受關注,當中T7系統是最強大的非自生轉錄裝置;T7系統依靠整合在染色體的T7 RNA聚合酶與T7啟動子專一結合並引發大量的轉錄mRNA可實現外源蛋白的工業級生產,卻受限於單一的大腸桿菌 BL21(DE3)。質體驅動的T7系統(PDT7)可廣義地應用在不同宿主,但常被認為對生物具有毒性且不穩定,原因尚未闡明。本研究構築16個自組成型PDT7系統,可以用於驅動高量的螢光蛋白並放大基因的表現。此外,本研究首次證實PDT7的細胞毒性及不穩定性是源自高表達T7 RNA聚合酶的正交效應造成細胞資源的過度利用。由於PDT7具有基因放大的效果,分別可提高27倍及5倍對葡萄糖及銅離子感應的靈敏度。而且PDT7系統能用於表達碳酸酐酶、賴氨酸脫羧酶和5-ALA合成酶、及在非模式生物的希瓦氏菌中實現於廣義物種的應用。
    生物傳感器相較於傳統的化學及物理方式,具有原位分析及生物相容性的優點,是醫療診斷的新趨勢。本研究第二部分,我們以葡萄糖響應的啟動子(PI promoter)比較三種遺傳效應子,包括核酶調節劑(RiboJ)、成簇的規則間隔的短回文重複序列干擾(CRISPRi)和PDT7來增強糖分子的偵測效能。RiboJ可將動態範圍(dynamic range)增加到2989 a.u.,但將信噪比(S/N)降低到1.59;CRISPRi介導的NIMPLY邏輯門將動態範圍及信噪比都增加到5720 a.u.及4.58;PDT7可達到44180 a.u的動態範圍,但信噪比仍為3.08。通過偶聯PDT7和CRISPRi介導的NIMPLY,我們構建了一個最佳的PIGAS菌株,維持了高的動態範圍,並由於降低了基礎表達,提高信噪比到4.95。我們將合成細菌引入微型裝置中,提供非侵入式及方便攜帶的尿糖檢查系統,可作為糖尿病診斷的替代方法。
    定向進化是合成生物學的核心工作,當中酶的改造必須依靠高通量的篩選平台,利用CRISPRi開發直接酶性能評估與確認技術(DEPEND)是本研究的第三個主題。我們在大腸桿菌以CRISPRi系統靶向碳酸酐酶基因(CRISPRi :: CA)控制細胞的生長,通過轉化具有目標基因的質體來恢復細胞生長,結果顯示基於CRISPRi :: CA的DEPEND系統可以篩選不同活性的碳酸酐酶。此外,利用五氨基乙酰丙酸合成酶(ALAS)可轉換甘氨酸和琥珀酸-CoA釋放出CO2分子的特性而補償生物量,亦可由高通量微孔板直接挑選出具有最佳ALAS活性的菌株。
    二氧化碳(CO2)排放一直是化學工程備受關注的原因,科學家致力開發降低及再利用二氧化碳的技術,其中光合生物代謝二氧化碳受限生長緩慢,基因工具及基因訊息缺乏,難以利用基改調控生產多樣性的化學品。本研究第四部分旨在建立大腸桿菌表達核糖1,5-雙磷酸羧化酶/加氧酶(RuBisCO)和磷酸二氫激酶(PRK)來吸收二氧化碳。首先我們建立簡易的CO2同化效率計算來評估其固碳能力。比較三種不同的設備:FIC、TLD及CBD;結果顯示在CBD中通入5%的CO2達到最佳的固碳能力為-2.63 g-CO2/g-DCW。通過共表達GroELS分子伴侶可增強CO2同化能力,進一步達到-1.81 g-CO2/g-DCW的固碳能力,減少32% CO2釋放。接著,我們比較了不同來源的RuBisCOs和PRKs,逐步整合基因(RuBisCO和PRK)到染色體,並搭配CRISPRi干擾zwf和pfkAB將碳流導向RuBisCO途徑,最終達成-1.58 g-CO2/g-DCW的同化能力。C13同位素分析證明配備RuBisCO的大腸桿菌確實可同化CO2並可同步循環利用CO2來生產各種蛋白質,分別生產了光動力治療的五氨基戊酮酸(5-ALA)癌症藥物及取代尼龍單體的二元胺1,5-二胺基戊烷(DAP),完成大腸桿菌高效利用二氧化碳的綠色細胞工廠。

    This research aims to harness the power of synthetic biology technology to develop multifunctional applications in E. coli. The central dogma of synthetic biology is to precisely and efficiently control the transcription and translation in the best cell by using the best gene and most efficient genetic tools to achieve unprecedented applications in medical, agricultural, industrial, food, energy, and biomaterial fields. In this dissertation, we intended to uncover the four unsolved scientific issues: (I) the host-independent genetic amplifier based on the T7 system; (II) enhancement of the sensitivity of whole-cell glucose biosensor; (III) establishment of screening platform for enzymatic activity based on the CRISPRi technology; (IV) simultaneous carbon assimilation and chemical production.
    In recent years, the development of host-independent transcription and translation systems has attracted more and more attention. Among host-independent transcription and translation systems, the T7 system is the most powerful one. The T7 system relies on the high activity of T7 RNA polymerase integrated on the chromosome and the specific binding to the T7 promoter to activate considerable transcription for industrial-level production of heterologous proteins in E. coli. However, it is restricted to E. coli chassis BL21(DE3). Plasmid-driven T7 system (PDT7) has also been reported to be broadly applied in different organisms, but the plasmid-driven T7 system is toxic and unstable, and the reason has not been explored. This study first constructed 16 constitutive PDT7s which could be used to express high-level sfGFP and to amplify the gene expression. Besides, we clarified that the cell toxicity and instability were attributed to the excessive utilization of cell resources caused by the orthogonality of the highly expressed T7 RNA polymerase to the T7 promoter. Due to the capability to gene amplification via PDT7, the sensitivity of glucose sensing and copper sensing increased by 27 times and 5 times, respectively. Furthermore, PDT7 can be used to express carbonic anhydrase, lysine decarboxylase, and 5-ALA synthetase as well as applied in Shewanella oneidensis MR-1 which is a non-canonical organism as a host-independent system.
    Compared with traditionally chemical and physical sensors, whole-cell biosensors possessed the advantages of high biocompatibility and in situ detection, so that it has been regarded as a new medical diagnosis. In the second part of this dissertation, we compared the genetic efficacy of three genetic effectors, including ribozyme regulator (RiboJ), clustered regularly spaced short palindromic repeat interference (CRISPRi), and plasmid-based T7RNA Polymerase (PDT7) in a glucose-responsive system (i.e., PI promoter) to further enhance the glucose-sensing performance. RiboJ can increase the dynamic range to 2989 a.u., but reduce the signal-to-noise ratio (S/N) to 1.59, while the CRISPRi-mediated NIMPLY logic gate increased the dynamic range and signal-to-noise ratio to 5720 a.u. and 4.58, respectively. The use of PDT7 can reach a dynamic range of 44180 a.u, but the signal-to-noise ratio is maintained at 3.08. By coupling PDT7 and CRISPRi-mediated NIMPLY, we have constructed an optimal PIGAS strain that maintained a high dynamic range and improved the signal-to-noise ratio to 4.95 due to reduced basic expression. Finally, we introduced synthetic bacteria into a miniature device to provide a portable system for daily urine glucose inspection, which will be an alternative method of diabetic diagnosis in the future.
    Direct evolution is the central work in the field of synthetic biology. In such work, a high throughput screening platform must be established to screen a better enzyme modification. Thus, a CRISPRi-mediated direct enzyme performance evaluation and determination (DEPEND) system was established in this dissertation. We harnessed the CRISPRi system targeting on the essential carbonic anhydrase gene, can (CRISPRi::CA) to control cell growth. By one-step transformation of the plasmid harboring the targeted enzyme into CRISPRi::CA to recover the cell growth as a direct enzyme performance evaluation and determination (DEPEND) system, it showed that the DEPEND system could be used to screen carbonic anhydrase with different activities. Besides, the DEPEND system also distinguished the activity of aminolevulinic acid synthase which can convert glycine and succinate-CoA to release CO2 molecules for release of cell arrest and the best enzyme target could be screened in a round of high throughput microwell experiment.
    The issue of CO2 emission is always the very reason that chemical engineering is highlighted. The scientists have devoted themselves to developing the technology to reduce the carbon dioxide emissions and to convert and utilize carbon dioxide. Among the biobased approaches, photosynthetic organisms grow slowly, and the lack of genetic tools and genetic information makes it difficult to regulate their metabolism to produce diverse chemicals through genetic modification. The fourth part in this study was to establish RuBisCO-equipped E. coli that expressed ribose 1,5-bisphosphate carboxylase/oxygenase (RuBisCOs) and phosphate dihydrogen kinase (PRK). First, we set up a simple calculation to evaluate its ability to assimilate carbon dioxide. Deciphering the effect of culture device in FIC, TLD and CBD showed that, in the CBD with forced diffusion of 5% CO2, carbon assimilation capacity achieved the optimal value of -2.63 g-CO2/g-DCW. In addition, co-expression of GroELS molecular chaperones can further enhance CO2 assimilation capability to -1.81 g-CO2/g-DCW and reduce CO2 release by 32%. Next, we compared different combinations of two ribose 1,5-bisphosphate carboxylase/oxygenases (RuBisCOs) and four phosphate dihydrogen kinases (PRKs) from different sources as well as integrated genetic element of RuBisCO and PRK with the introduction of CRISPRi system knocking down zwf and pfkAB to redirect the carbon flow to the RuBisCO pathway, which finally reached -1.58 g-CO2/g-DCW. The C13 isotope analysis revealed that the RuBisCO-equipped E. coli indeed simultaneously assimilated CO2 and produced various proteins for further production of high-value molecules, including 5-aminolevulinic acid (ALA) that could be applied in photo dynamic therapy of cancer, and 1,5-diaminopentane (DAP) to replace the petroleum-based nylon monomer.

    中文摘要 I Abstract IV 致謝 VIII Table of Content IX Abbreviations XX Chapter 1 Introduction 1 1.1 Motivation and Purpose 1 1.2 Research Scope 4 Chapter 2 Literature Review 8 2.1 Synthetic Biology 8 2.1.1 Development of genetic tools 8 2.1.2 Biosensor is one of the prominent fields 11 2.2 T7 RNA Polymerase as a Genetic Tool 14 2.2.1 Integration of T7RNAP into genome 14 2.2.2 Plasmid-driven T7RNAP system (PDT7) 17 2.3 CRISPR System 19 2.3.1 Origin and mechanism of CRISPR system 19 2.3.2 Classification of CRISPR system 20 2.3.3 CRISPR as a gene editing tool 22 2.3.4 CRISPR as gene expression regulation tool 24 2.4 CO2 as the Carbon Source 26 2.4.1 Bio-based CO2 conversion is ecofriendly 26 2.4.2 Approaches to assess the CO2 assimilation capability 28 2.4.3 Physiology effect of RuBisCO system 33 2.4.4 Strategies to enhance the RuBisCO system 37 2.4.5 Transforming the heterotroph to autotroph 44 2.4.6 Prospective of RuBisCO-based chemical production 49 Chapter 3 Materials and Methods 52 3.1 Chemicals and Materials 52 3.2 Equipment 54 3.3 Cell Culture and Devices 55 3.3.1 Mediums used in this study 55 3.3.2 Cell culture condition and devices 55 3.3.3 Observation of cell morphology 56 3.4 Molecular Cloning and Recombinant Strain Construction 58 3.4.1 Plasmid DNA extraction 58 3.4.2 Restriction enzyme digestion 59 3.4.3 Primer phosphorylation and annealing 60 3.4.4 Polymer chain reaction (PCR) 60 3.4.5 DNA electrophoresis 62 3.4.6 Gel extraction and PCR purification 62 3.4.7 Ligation 63 3.4.8 Heat-shock competent cell preparation 63 3.4.9 Heat-shock transformation 64 3.4.10 Gene integration via one-step cloning and integration method 64 3.5 Protein Analysis 66 3.5.1 Reagent and solution preparation 66 3.5.2 Sample preparation 66 3.5.3 SDS-PAGE preparation 67 3.5.4 SDS-PAGE running and staining method 67 3.5.5 Qantifying the relative protein concentration on PAGE 68 3.5.6 Identify the protein identity by tandem mass spectrometer 68 3.6 Analytical Methods 69 3.6.1 Determination of optical density, biomass and sfGFP florescence intensity 69 3.6.2 Determination of biosensing parameters using Hill’s equation. 69 3.6.3 Determination of plasmid copy number by quantitative PCR (qPCR) 70 3.6.4 Determination of relative transcription level by quantitative reverse transcriptase PCR (q-RT-PCR) 70 3.6.5 Determination of carbonic anhydrase activity 73 3.6.6 Determination of lysine decarboxylase activity 74 3.6.7 Determination of ALA concentration 75 3.6.8 Determination of organic acid metabolites by HPLC 76 3.6.9 Determination of CO2 assimilation capability 78 Chapter 4 New Insight into Plasmid-Driven T7 RNA Polymerase (PDT7) in Escherichia coli and Used as Genetic Amplifier for Biosensor 79 4.1 Background 79 4.2 Plasmid Construction 81 4.3 Results and Discussion 87 4.3.1 Development of constitutive PDT7 system in E. coli 87 4.3.2 Constitutive PDT7 proofs the toxicity caused by orthogonal T7RNAP and T7 promoter 90 4.3.3 Central dogma analysis of constitutive PDT7 in E. coli 97 4.3.4 Protein analysis provides new insight into the stability of PDT7 system. 99 4.3.5 Pathway engineering using PDT7 106 4.3.6 Apply PDT7 system to enhance the sensitivity of cell-based biosensors. 109 4.3.7 Identify the promoter strength in non-canonical E. coli strain and organism 112 4.4 Conclusion 115 Chapter 5 CRISPRi-Mediated NIMPLY Logic Gate for Fine-Tuning the Whole-cell Sensing Toward Simple Urine Glucose Detection 116 5.1 Background 116 5.2 Plasmid Construction 118 5.3 Results and Discussion 122 5.3.1 Determine medium for whole-cell glucose sensing 122 5.3.2 Enhanced the glucose sensing efficacy by ribozyme regulator RiboJ 125 5.3.3 Used CRISPRi system to elevate S/N value of glucose sensing 128 5.3.4 PDT7 and CRISPRi to boost glucose sensing performance 132 5.3.5 Adapted synthetic bacteria into a portable urine glucose sensing system 134 5.4 Conclusion 138 Chapter 6 CRISPRi-Mediated Programing Essential Gene can as a Direct Enzymatic Performance Evaluation & Determination (DEPEND) System 139 6.1 Background 139 6.2 Plasmid Construction and DEPEND System 142 6.3 Results and Discussion 146 6.3.1 Controlled cell growth by CRISPRi of the essential gene can 146 6.3.2 CRISPRi::CA serves as a CO2 whole-cell biosensor 151 6.3.3 CRISPRi::CA serves as a CO2 whole-cell biosensor screening CA performance by CRISPRi::CA 153 6.3.4 Characterization of CO2-evolving enzymatic reaction by CRISPRi::CA 156 6.4 Conclusion 159 Chapter 7 Design and Optimization of Bioreactor to Boost Carbon Dioxide Assimilation in RuBisCO-Equipped Escherichia coli 160 7.1 Background 160 7.2 Plasmid Construction 163 7.3 Results and Discussion 165 7.3.1 Calculation of CO2 assimilation by mass balance 165 7.3.2 Effect of bioreactors on the CO2 assimilation 168 7.3.3 Optimization of CO2 utilization by RuBisCO-equipped E. coli 170 7.3.4 Enhance the CO2 assimilation by inducer and chaperone 173 7.3.5 New insight of the toxicity and evolution in the RuBisCO-equipped E. coli 177 7.4 Conclusion 181 Chapter 8 Stepwise Optimization of Genetic RuBisCO-Equipped Escherichia coli for Low Carbon-Footprint Protein and Chemical Production 182 8.1 Background 182 8.2 Plasmid Construction 184 8.3 Results and Discussion 189 8.3.1 Selection of RuBisCO genes from the green and red algae 189 8.3.2 Selection of PRK genes from the green and red algae 192 8.3.3 Stepwise integration of genetic element to obtain a robust chassis 195 8.3.4 Enhance carbon flux toward RuBioCO pathway by CRISPRi 197 8.3.5 Coupling the CO2 assimilation and high-value chemical production 202 8.3.6 Low carbon-footprint protein over-expression in GREEN strain 206 8.4 Conclusion 209 Chapter 9 Prospectives and Challenges 210 References 216 Appendix 250

    1. Abudayyeh, O. O, Gootenberg, J. S., Konermann, S., Joung, J., Slaymaker, I. M., Cox, D. B., Shmakov, S., Makarova, K. S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E. S., Koonin, E. V., & Zhang, F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353(6299), aaf5573, 2016.
    2. Ali, Z., Abul-Faraj, A., Li, L., Ghosh, N., Piatek, M., Mahjoub, A., Aouida, M., Piatek, A., Baltes, N. J., Voytas, D. F., Dinesh-Kumar, S., & Mahfouz, M. M. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Molecular Plant, 8(8), 1288-1291, 2015.
    3. Alvizo, O., Nguyen, L. J., Savile, C. K., Bresson, J. A., Lakhapatri, S. L., Solis, E. O., Fox, R. J., Broering, J. M., Benoit, M. R., Zimmerman, S. A., Novick, S. J., Liang, J., & Lalonde, J. J. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas. Proceedings of the National Academy of Sciences, 111(46), 16436-16441, 2014.
    4. Antonovsky, N., Gleizer, S., Noor, E., Zohar, Y., Herz, E., Barenholz, U., Zelcbuch, L., Amram, S., Wides, A., Tepper, N., Davidi, D., Bar-On, Y., Bareia, T., Wernick, D. G., Shani, I., Malitsky, S., Jona, G., Bar-Even, A., & Milo, R. Sugar synthesis from CO2 in Escherichia coli. Cell, 166(1), 115-125. 2016.
    5. Anwar, M. N., Fayyaz, A., Sohail, N. F., Khokhar, M. F., Baqar, M., Khan, W. D., Rasool, K., Rehan, M. & Nizami, A. S. CO2 capture and storage: a way forward for sustainable environment. Journal of Environmental Management, 226, 131-144, 2018.
    6. Ao, X., Yao, Y., Li, T., Yang, T. T., Dong, X., Zheng, Z. T., Chen, G. Q., Wu, Q. & Guo, Y. A multiplex genome editing method for Escherichia coli based on CRISPR-Cas12a. Frontiers in Microbiology, 9, 2307, 2018
    7. Arnold, F. H., Smith, G. P., & Winter, G. P. Directed evolution–bringing the power of evolution to the laboratory: 2018 Nobel Prize in Chemistry. Current Science, 115(9), 1627, 2018.
    8. Atkinson, J. T., Campbell, I. J., Thomas, E. E., Bonitatibus, S. C., Elliott, S. J., Bennett, G. N., & Silberg, J. J. Metalloprotein switches that display chemical-dependent electron transfer in cells. Nature Chemical Biology, 15(2), 189, 2019.
    9. Ausländer, S., & Fussenegger, M. From gene switches to mammalian designer cells: present and future prospects. Trends in Biotechnology, 31(3), 155-168, 2013.
    10. Ausländer, S., Ausländer, D., & Fussenegger, M. Synthetic biology—the synthesis of biology. Angewandte Chemie International Edition, 56(23), 6396-6419, 2017.
    11. Bang, J., Hwang, C. H., Ahn, J. H., Lee, J. A., & Lee, S. Y. Escherichia coli is engineered to grow on CO2 and formic acid. Nature Microbiology, 5(12), 1459-1463, 2020.
    12. Baumschlager, A., Aoki, S. K., & Khammash, M. Dynamic blue light-inducible T7 RNA polymerases (Opto-T7RNAPs) for precise spatiotemporal gene expression control. ACS Synthetic Biology, 6(11), 2157-2167, 2017.
    13. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J., & Nekrasov, V. Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 32, 76-84, 2015.
    14. Berrisford, J. M., Baradaran, R., & Sazanov, L. A. Structure of bacterial respiratory complex I. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1857(7), 892-901, 2016.
    15. Bhowmick, R., & Girotti, A. W. Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radical Biology and Medicine, 48(10), 1296-1301, 2010.
    16. Bothfeld, W., Kapov, G., & Tyo, K. E. A glucose-sensing toggle switch for autonomous, high productivity genetic control. ACS Synthetic Biology, 6(7), 1296-1304, 2017.
    17. Bouzon, M., Perret, A., Loreau, O., Delmas, V., Perchat, N., Weissenbach, J., Taran, F. & Marlière, P. A synthetic alternative to canonical one-carbon metabolism. ACS Synthetic Biology, 6(8), 1520-1533, 2017.
    18. Bracher, A., Whitney, S. M., Hartl, F. U., & Hayer-Hartl, M. Biogenesis and metabolic maintenance of RuBisCO. Annual Review of Plant Biology, 68, 29-60, 2017.
    19. Brockman, I. M., & Prather, K. L. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metabolic Engineering, 28, 104-113, 2015.
    20. Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., Puxty, G., Reimer, J., Reiner, D. M., Rubin, E. S., Scott, S. A., Shah, N., Smit, B., Trusler, J. P. M., Webley, P., Wilcoxx, J., & Dowell, N. M. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11(5), 1062-1176, 2018.
    21. Cambray, G., Guimaraes, J. C., & Arkin, A. P. Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli. Nature Biotechnology, 36(10), 1005, 2018.
    22. Cao, Y., Li, X., Li, F., & Song, H. CRISPRi–sRNA: transcriptional–translational regulation of extracellular electron transfer in Shewanella oneidensis. ACS Synthetic Biology, 6(9), 1679-1690, 2017.
    23. Carrier, T. A., & Keasling, J. D. Engineering mRNA stability in E. coli by the addition of synthetic hairpins using a 5' cassette system. Biotechnology and Bioengineering, 55(3), 577-580, 1997.
    24. Carte, J., Wang, R., Li, H., Terns, R. M., & Terns, M. P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes & Development, 22(24), 3489-3496, 2008.
    25. Ceroni, F., Boo, A., Furini, S., Gorochowski, T. E., Borkowski, O., Ladak, Y. N., Awan, A. R., Gilbert, C., Stan, G. B., & Ellis, T. Burden-driven feedback control of gene expression. Nature Methods, 15(5), 387-393, 2018.
    26. Chamberlin, M., Mcgrath, J. & Waskell, L. New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature 228 (5268), 227-231, 1970.
    27. Change, I. C. (2014). Synthesis Report. Contribution of working groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151(10.1017).
    28. Charles, H. P., & Roberts, G. A. Carbon dioxide as a growth factor for mutants of Escherichia coli. Microbiology, 51(2), 211-224, 1968.
    29. Cheah, W. Y., Ling, T. C., Juan, J. C., Lee, D. J., Chang, J. S., & Show, P. L. Biorefineries of carbon dioxide: from carbon capture and storage (CCS) to bioenergies production. Bioresource Technology, 215, 346-356, 2016.
    30. Cheetham, G. M. & Steitz, T. A. Structure of a transcribing T7 RNA polymerase initiation complex. Science, 286(5448), 2305-2309, 1999.
    31. Chen, F. Y., Jung, H. W., Tsuei, C. Y., & Liao, J. C. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell ,182(4), 933-946, 2020.
    32. Chen, P. T., Chiang, C. J., Chen, Y. T., Lin, H. C., Liu, C. H., Chao, Y. P., & Shaw, J. F. Strategy for stable and high-level expression of recombinant trehalose synthase in Escherichia coli. Journal of Agricultural and Food Chemistry, 60(23), 6063-6068, 2012
    33. Chen, X. F., Xia, X. X., Lee, S. Y., & Qian, Z. G. Engineering tunable biosensors for monitoring putrescine in Escherichia coli. Biotechnology and Bioengineering, 115(4), 1014-1027, 2018.
    34. Cheong, D. E., Ko, K. C., Han, Y., Jeon, H. G., Sung, B. H., Kim, G. J., Choi, J. H. & Song, J. J. Enhancing functional expression of heterologous proteins through random substitution of genetic codes in the 5’ coding region. Biotechnology and Bioengineering, 112(4), 822-826, 2015.
    35. Choi, K. R., Jang, W. D., Yang, D., Cho, J. S., Park, D., & Lee, S. Y. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends in Biotechnology, 37(8), 817-837, 2019.
    36. Claassens, N. J., Sánchez-Andrea, I., Sousa, D. Z., & Bar-Even, A. Towards sustainable feedstocks: A guide to electron donors for microbial carbon fixation. Current Opinion in Biotechnology, 50, 195-205, 2018.
    37. Clark, J. H., Luque, R., & Matharu, A. S. Green chemistry, biofuels, and biorefinery. Annual Review of Chemical and Biomolecular Engineering, 3, 183-207, 2012.
    38. Clifton, K. P., Jones, E. M., Paudel, S., Marken, J. P., Monette, C. E., Halleran, A. D., Epp, L., & Saha, M. S. The genetic insulator RiboJ increases expression of insulated genes. Journal of Biological Engineering, 12(1), 1-6, 2018.
    39. Clomburg, J. M., Crumbley, A. M., & Gonzalez, R. Industrial biomanufacturing: the future of chemical production. Science, 355(6320), 2017.
    40. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823, 2013.
    41. Conrado, R. J., & Gonzalez, R. Envisioning the bioconversion of methane to liquid fuels. Science, 343(6171), 621-623, 2014.
    42. Cotton, C. A., Claassens, N. J., Benito-Vaquerizo, S., & Bar-Even, A. Renewable methanol and formate as microbial feedstocks. Current Opinion in Biotechnology, 62, 168-180, 2020.
    43. d Mattozzi, M., Ziesack, M., Voges, M. J., Silver, P. A., & Way, J. C. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth. Metabolic Engineering, 16, 130-139, 2013.
    44. Davanloo, P., Rosenberg, A. H., Dunn, J. J., & Studier, F. W. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, 81(7), 2035-2039, 1984.
    45. Debs-Louka, E., Louka, N., Abraham, G., Chabot, V., & Allaf, K. Effect of compressed carbon dioxide on microbial cell viability. Applied and Environmental Microbiology, 65(2), 626-631, 1999.
    46. Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340), 602-607, 2011.
    47. DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J., & Church, G. M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 41(7), 4336-4343, 2013.
    48. Dong, C., Fontana, J., Patel, A., Carothers, J. M., & Zalatan, J. G. Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nature Communications, 9(1), 1-11, 2018.
    49. Dumay, V., Danchin, A., & Crasnier, M. Regulation of Escherichia coli adenylate cyclase activity during hexose phosphate transport. Microbiology, 142(3), 575-583, 1996.
    50. Dürre, P., & Eikmanns, B. J. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Current Opinion in Biotechnology, 35, 63-72, 2015.
    51. Effendi, S. S. W., & Ng, I. S. The prospective and potential of carbonic anhydrase for carbon dioxide sequestration: A critical review. Process Biochemistry, 87, 55-65, 2019.
    52. Elhadi, D., Lv, L., Jiang, X. R., Wu, H., & Chen, G. Q. CRISPRi engineering E. coli for morphology diversification. Metabolic Engineering, 38, 358-369, 2016.
    53. Fayyaz, M., Chew, K. W., Show, P. L., Ling, T. C., Ng, I. S., & Chang, J. S. Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnology Advances, 107554, 2020.
    54. Fernandez-Rodriguez, J., Moser, F., Song, M., & Voigt, C. A. Engineering RGB color vision into Escherichia coli. Nature Chemical Biology, 13(7), 706-708, 2017.
    55. Firth, A. L., Menon, T., Parker, G. S., Qualls, S. J., Lewis, B. M., Ke, E., Dargitz, C. T., Wright, R., Khanna, A., Gage, F. H., & Verma, I. M. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Reports, 12(9), 1385-1390, 2015.
    56. Flamholz, A. I., Dugan, E., Blikstad, C., Gleizer, S., Ben-Nissan, R., Amram, S., Antonovsky, N., Ravishankar, S., Noor, E., Bar-Even, A., Milo, R., Savage, D. F. Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli. Elife, 9, e59882, 2020.
    57. Flamholz, A. I., Prywes, N., Moran, U., Davidi, D., Bar-On, Y. M., Oltrogge, L. M., Alves, R., Savage, D. & Milo, R. Revisiting trade-offs between RuBisCO kinetic parameters. Biochemistry, 58(31), 3365-3376, 2019.
    58. Folsom, J. P., & Carlson, R. P. Physiological, biomass elemental composition and proteomic analyses of Escherichia coli ammonium-limited chemostat growth, and comparison with iron-and glucose-limited chemostat growth. Microbiology, 161(Pt 8), 1659, 2015.
    59. Friedman, M. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. Journal of Agricultural and Food Chemistry, 52(3), 385-406, 2004.
    60. Gao, C., Wang, S., Hu, G., Guo, L., Chen, X., Xu, P., & Liu, L. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi‐guided multiplexed metabolic tuning. Biotechnology and Bioengineering, 115(3), 661-672, 2018.
    61. Gardner, T. S., Cantor, C. R., & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339-342, 2000.
    62. Gassler, T., Sauer, M., Gasser, B., Egermeier, M., Troyer, C., Causon, T., Hann, S., Mattanovich, D. & Steiger, M. G. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nature Biotechnology, 38(2), 210-216, 2020.
    63. Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., Lim, W. A., Weissman, J. S., & Qi, L. S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442-451, 2013.
    64. Gleizer, S., Ben-Nissan, R., Bar-On, Y. M., Antonovsky, N., Noor, E., Zohar, Y., Jona, G., Krieger, E., Shamshoum, M., Bar-Even, A. & Milo, R. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell. 179(6), 1255-1263, 2019.
    65. Goeppert, A., Czaun, M., Prakash, G. S., & Olah, G. A. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy & Environmental Science, 5(7), 7833-7853, 2012.
    66. Gong, F., Liu, G., Zhai, X., Zhou, J., Cai, Z., & Li, Y. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Biotechnology for Biofuels, 8(1), 1-10, 2015.
    67. Gong, F., Zhu, H., Zhang, Y., & Li, Y. Biological carbon fixation: from natural to synthetic. Journal of CO2 Utilization, 28, 221-227, 2018.
    68. Goodall, E. C., Robinson, A., Johnston, I. G., Jabbari, S., Turner, K. A., Cunningham, A. F., Lund, P. A., Cole, J. A., & Henderson, I. R. The essential genome of Escherichia coli K-12. MBio, 9(1), e02096-17, 2018.
    69. Griffith, D. P., Musher, D. Á., & Itin, C. Urease. The primary cause of infection-induced urinary stones. Investigative urology, 13(5), 346-350, 1976.
    70. Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(suppl_2), W526-W531, 2005.
    71. Guadalupe-Medina, V., Wisselink, H. W., Luttik, M. A., de Hulster, E., Daran, J. M., Pronk, J. T., & van Maris, A. J. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnology for Biofuels. 6(1), 125, 2013.
    72. Gupta, R. M., & Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. The Journal of Clinical Investigation, 124(10), 4154-4161, 2014.
    73. Gurbatri, C. R., Lia, I., Vincent, R., Coker, C., Castro, S., Treuting, P. M., Hinchliffe, T. E., Arpaia, N., & Danino, T. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Science Translational Medicine, 12(530), eaax0876, 2020.
    74. Han, T., Chen, Q., & Liu, H. Engineered photoactivatable genetic switches based on the bacterium phage T7 RNA polymerase. ACS Synthetic Biology, 6(2), 357-366, 2017.
    75. Hashimoto, M., & Kato, J. I. Indispensability of the Escherichia coli carbonic anhydrases YadF and CynT in cell proliferation at a low CO2 partial pressure. Bioscience, Biotechnology, and Biochemistry, 67(4), 919-922, 2003.
    76. Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K., & Doudna, J. A. Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science, 329(5997), 1355-1358, 2010.
    77. Hawkins, J. S., Wong, S., Peters, J. M., Almeida, R., & Qi, L. S. (2015). Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi). In: Lundgren, M., Charpentier, E., Fineran, P. (eds) CRISPR. Methods in Molecular Biology, vol 1311. Humana Press, New York, NY, 349-362.
    78. He, Y. C., Jiang, C. X., Chong, G. G., Di, J. H., & Ma, C. L. Biological synthesis of 2, 5-bis (hydroxymethyl) furan from biomass-derived 5-hydroxymethylfurfural by E. coli CCZU-K14 whole cells. Bioresource Technology, 247, 1215-1220, 2018.
    79. Herz, E., Antonovsky, N., Bar-On, Y., Davidi, D., Gleizer, S., Prywes, N., Noda-Garcia, L., Lyn Frisch, K., Zohar, Y., Wernick, D. G., Savidor, A., Barenholz, U., & Milo, R. The genetic basis for the adaptation of E. coli to sugar synthesis from CO2. Nature Communication, 8(1), 1-10, 2017.
    80. Holkers, M., Maggio, I., Liu, J., Janssen, J. M., Miselli, F., Mussolino, C., Recchia, A., Cathomen, T., & Goncalves, M. A. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Research, 41(5), e63-e63, 2013.
    81. Horvath, P., & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962), 167-170, 2010.
    82. Hsu, K. P., Tan, S. I., Chiu, C. Y., Chang, Y. K., & Ng, I. S. ARduino‐pH Tracker and screening platform for characterization of recombinant carbonic anhydrase in Escherichia coli. Biotechnology Progress, 35(5), e2834, 2019.
    83. Hu, D., Li, M., Zhou, R., & Sun, Y. Design and optimization of photo bioreactor for O2 regulation and control by system dynamics and computer simulation. Bioresource Technology, 104, 608-615, 2012.
    84. Hu, G., Li, Y., Ye, C., Liu, L., & Chen, X. Engineering microorganisms for enhanced CO2 sequestration. Trends in Biotechnology, 37(5), 532-547, 2019.
    85. Hu, G., Zhou, J., Chen, X., Qian, Y., Gao, C., Guo, L., Xu, P., Chen, W., Chen, J., Li, Y. & Liu, L. Engineering synergetic CO2-fixing pathways for malate production. Metabolic Engineering, 47, 496-504, 2018.
    86. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429-5433, 1987.
    87. Ito, N., Miyashita, M., Ikeda, S. Portable urine glucose sensor. In Chemical, gas, and biosensors for internet of things and related applications. Mitsubayashi, K., Niwa, O., Ueno, Y. Eds., Elsevier. 2019; pp. 3-12.
    88. Jäckel, C., & Hilvert, D. Biocatalysts by evolution. Current Opinion in Biotechnology, 21(6), 753-759, 2010.
    89. Jang, S., Lee, B., Jeong, H. H., Jin, S. H., Jang, S., Kim, S. G., Jung ,G. Y., & Lee, C. S. On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array. Lab on a Chip, 16(10), 1909-1916, 2016.
    90. Jansen, R., Embden, J. D., Gaastra, W., & Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43 (6), 1565-1575, 2002.
    91. Jeske, L., Placzek, S., Schomburg, I., Chang, A., & Schomburg, D. BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Research, 47(D1), D542-D549, 2018.
    92. Jia, Y., & Patel, S. S. Kinetic mechanism of transcription initiation by bacteriophage T7 RNA polymerase. Biochemistry, 36(14), 4223-4232, 1997.
    93. Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31(3), 233-239, 2013.
    94. Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., & Yang, S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 81(7), 2506-2514, 2015.
    95. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821, 2012.
    96. Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. RNA-programmed genome editing in human cells. Elife, 2, e00471, 2013.
    97. Jo, B. H., Moon, H., & Cha, H. J. Engineering the genetic components of a whole‐cell catalyst for improved enzymatic CO2 capture and utilization. Biotechnology and Bioengineering, 117(1), 39-48, 2020.
    98. Jouny, M., Luc, W., & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Industrial & Engineering Chemistry Research, 57(6), 2165-2177, 2018.
    99. Kampmann, M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chemical Biology, 13(2), 406-416, 2018.
    100. Kang, C. W., Lim, H. G., Yang, J., Noh, M. H., Seo, S. W., & Jung, G. Y. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number. Metabolic Engineering, 48, 121-128, 2018.
    101. Kang, Z., Ding, W., Gong, X., Liu, Q., Du, G., & Chen, J. Recent advances in production of 5-aminolevulinic acid using biological strategies. World Journal of Microbiology and Biotechnology, 33(11), 1-7, 2017.
    102. Kang, Z., Wang, Y., Gu, P., Wang, Q., & Qi, Q. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metabolic Engineering, 13(5), 492-498, 2011.
    103. Kelwick, R., Bowater, L., Yeoman, K. H., & Bowater, R. P. Promoting microbiology education through the iGEM synthetic biology competition. FEMS Microbiology Letters, 362(16), 2015.
    104. Kerfeld, C. A., & Melnicki, M. R. Assembly, function and evolution of cyanobacterial carboxysomes. Current Opinion of Plant Biology, 31, 66–75, , 2016.
    105. Kim, G. Y., Roh, K., & Han, J. I. The use of bicarbonate for microalgae cultivation and its carbon footprint analysis. Green Chemistry, 21(18), 5053-5062, 2019.
    106. Kim, H. J., Lim, J. W., Jeong, H., Lee, S. J., Lee, D. W., Kim, T., & Lee, S. J. (2016). Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosensors and Bioelectronics, 79, 701-708, 2016.
    107. Kim, J., Campbell, A. S., & Wang, J. Wearable non-invasive epidermal glucose sensors: A review. Talanta 177, 163-170, 2018a.
    108. Kim, S. J., Yoon, J., Im, D. K., Kim, Y. H., & Oh, M. K. Adaptively evolved Escherichia coli for improved ability of formate utilization as a carbon source in sugar-free conditions. Biotechnology for Biofuels. 12(1), 207, 2019.
    109. Kim, S. K., Kim, S. H., Subhadra, B., Woo, S. G., Rha, E., Kim, S. W., Kim, H., Lee, D. H., & Lee, S. G. A genetically encoded biosensor for monitoring isoprene production in engineered Escherichia coli. ACS Synthetic Biology, 7(10), 2379-2390, 2018b.
    110. Kim, S., Lindner, S. N., Aslan, S., Yishai, O., Wenk, S., Schann, K., & Bar-Even, A. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nature Chemical Biology, 16(5), 538-545, 2020.
    111. Kobayashi, J., Sasaki, D., Bamba, T., Hasunuma, T., & Kondo, A. Sustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 103(3), 1243-1254, 2019.
    112. Koonin, E. V., Makarova, K. S., & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67-78, 2017.
    113. Kumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A., & Kubiak, C. P. Photochemical and photoelectrochemical reduction of CO2. Annual Review of Physical Chemistry, 63, 541-569, 2012.
    114. Kushwaha, M. & Salis, H. M. A portable expression resource for engineering cross-species genetic circuits and pathways. Nature Communications, 6(1), 7832, 2015.
    115. Lai, Y. C., Chang, C. H., Chen, C. Y., Chang, J. S., & Ng, I. S. Towards protein production and application by using Chlorella species as circular economy. Bioresource Technology, 289, 121625, 2019.
    116. Lalwani, M. A., Ip, S. S., Carrasco-López, C., Day, C., Zhao, E. M., Kawabe, H., & Avalos, J. L. Optogenetic control of the lac operon for bacterial chemical and protein production. Nature Chemical Biology, 17, 71-79, 2021.
    117. Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., and Qi, L. S. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 8(11), 2180-2196, 2013.
    118. Leclaire, J., & Heldebrant, D. J. A call to (green) arms: a rallying cry for green chemistry and engineering for CO2 capture, utilisation and storage. Green Chemistry, 20(22), 5058-5081, 2018.
    119. Lee, J. W., Chan, C. T., Slomovic, S., & Collins, J. J. Next-generation biocontainment systems for engineered organisms. Nature Chemical Biology, 14(6), 530-537, 2018.
    120. Lee, J. Y., Sung, B. H., Oh, S. H., Kwon, K. K., Lee, H., Kim, H., Lee, D. H., Yeom, S. J., & Lee, S. G. C1 compound biosensors: design, functional study, and applications. International Journal of Molecular Sciences, 20(9), 2253, 2019.
    121. Lee, S. Y., Kim, Y. S., Shin, W. R., Yu, J., Lee, J., Lee, S., Kim, Y. H. & Min, J. Non-photosynthetic CO2 bio-mitigation by Escherichia coli harbouring CBB genes. Green Chemistry, 22(20), 6889-6896, 2020.
    122. Lee, Y. J., Hoynes-O'Connor, A., Leong, M. C., & Moon, T. S. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system. Nucleic Acids Research, 44(5), 2462-2473, 2016.
    123. Levasseur, W., Perre, P., & Pozzobon, V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances, 41, 107545, 2020.
    124. Lewis, K. M., & Ke, A. Building the class 2 CRISPR-Cas arsenal. Molecular Cell, 65(3), 377-379, 2017.
    125. Li, D., Wang, L., Zhao, Q., Wei, W., & Sun, Y. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresource Technology, 185, 269-275, 2015a.
    126. Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G. M., & Sheen, J. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31(8), 688-691, 2013.
    127. Li, Y. H., Ou-Yang, F. Y., Yang, C. H., & Li, S. Y. The coupling of glycolysis and the RuBisCO-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation. Bioresource Technology, 187, 189-197, 2015b.
    128. Li, Y., Li, S., Wang, J., & Liu, G. CRISPR/Cas systems towards next-generation biosensing. Trends in Biotechnology, 37(7), 730-743, 2019.
    129. Liang, S., Altaf, N., Huang, L., Gao, Y., & Wang, Q. Electrolytic cell design for electrochemical CO2 reduction. Journal of CO2 Utilization, 35, 90-105, 2020.
    130. Liang, X., Li, C., Wang, W., & Li, Q. Integrating T7 RNA polymerase and its cognate transcriptional units for a host-independent and stable expression system in single plasmid. ACS Synthetic Biology, 7(5), 1424-1435, 2018.
    131. Lim, H. G., Jang, S., Jang, S., Seo, S. W., & Jung, G. Y. Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals. Current Opinion in Biotechnology, 54, 18-25, 2018.
    132. Lin, W. R., Lai, Y. C., Sung, P. K., Tan, S. I., Chang, C. H., Chen, C. Y., Chang, J. S. & Ng, I. S. Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. Journal of the Taiwan Institute of Chemical Engineers, 93, 131-141, 2018.
    133. Lin, W. R., Tan, S. I., Hsiang, C. C., Sung, P. K., & Ng, I. S. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery. Bioresource Technology, 291, 121932, 2019.
    134. Lindner, S. N., Ramirez, L. C., Krüsemann, J. L., Yishai, O., Belkhelfa, S., He, H., Bouzon, M., Döring, V.,& Bar-Even, A. (2018). NADPH-auxotrophic E. coli: a sensor strain for testing in vivo regeneration of NADPH. ACS Synthetic Biology, 7(12), 2742-2749, 2018.
    135. Liu, C., Young, A. L., Starling-Windhof, A., Bracher, A., Saschenbrecker, S., Rao, B. V., Berninghausen, O., Mielke, T., Hartl, F. U., Beckmann, R., & Hayer-Hartl, M. Coupled chaperone action in folding and assembly of hexadecameric RuBisCO. Nature, 463(7278), 197-202, 2010.
    136. Liu, E. J., Tseng, I. T., Chen, Y. L., Pang, J. J., Shen, Z. X., & Li, S. Y. The physiological responses of Escherichia coli triggered by phosphoribulokinase (prkA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Microorganisms, 8(8), 1187, 2020.
    137. Lopreside, A., Wan, X., Michelini, E., Roda, A., & Wang, B. Comprehensive profiling of diverse genetic reporters with application to whole-cell and cell-free biosensors. Analytical Chemistry, 91(23), 15284-15292, 2019.
    138. Lou, C., Stanton, B., Chen, Y. J., Munsky, B., & Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nature Biotechnology, 30(11), 1137-1142, 2012.
    139. Lou, J. W., Zhu, L., Wu, M. B., Yang, L. R., Lin, J. P., & Cen, P. L. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. Journal of Zhejiang University Science B, 15(5), 491-499, 2014.
    140. Luo, Z. W., Cho, J. S., & Lee, S. Y. Microbial production of methyl anthranilate, a grape flavor compound. Proceedings of the National Academy of Sciences, 116(22), 10749-10756, 2019.
    141. Lv, L., Ren, Y. L., Chen, J. C., Wu, Q., & Chen, G. Q. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P (3HB-co-4HB) biosynthesis. Metabolic Engineering, 29, 160-168, 2015.
    142. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. RNA-guided human genome engineering via Cas9. Science, 339(6121), 823-826, 2013.
    143. Manzerall, D. & Granick, S. The occurrence and determination of delta aminolevulinic acid and porphobilinogen in urine. Journal of Biology Chemistry, 219(1), 435-436, 1956.
    144. Matsumoto, K. I., Saito, J., Yokoo, T., Hori, C., Nagata, A., Kudoh, Y., Ooi, T., & Taguchi, S. Ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO)-mediated de novo synthesis of glycolate-based polyhydroxyalkanoate in Escherichia coli. Journal of Bioscience and Bioengineering, 128(3), 302-306, 2019.
    145. McNevin, D., Von Caemmerer, S., & Farquhar, G. Determining RuBisCO activation kinetics and other rate and equilibrium constants by simultaneous multiple non-linear regression of a kinetic model. Journal of Experimental Botany, 57(14), 3883-3900, 2006.
    146. Merlin, C., Masters, M., McAteer, S., & Coulson, A. Why is carbonic anhydrase essential to Escherichia coli ? Journal of Bacteriology, 185(21), 6415-6424, 2003.
    147. Meyer, A. J., Ellefson, J. W., & Ellington, A. D. Directed evolution of a panel of orthogonal T7 RNA polymerase variants for in vivo or in vitro synthetic circuitry. ACS Synthetic Biology, 4(10), 1070-1076, 2015.
    148. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nature Chemical Biology, 15(2), 196-204, 2019.
    149. Mikkelsen, M., Jørgensen, M., & Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 3(1), 43-81, 2010.
    150. Min, B. E., Seo, S. W., & Jung, G. Y. Switching control of an essential gene for reprogramming of cellular phenotypes in Escherichia coli. Biotechnology and Bioengineering, 109(7), 1875-1880, 2012.
    151. Miyashita, M., Ito, N., Ikeda, S., Murayama, T., Oguma, K., & Kimura, J. Development of urine glucose meter based on micro-planer amperometric biosensor and its clinical application for self-monitoring of urine glucose. Biosensors and Bioelectronics, 24(5), 1336-1340, 2009.
    152. Mojica, F. J., Díez‐Villaseñor, C., Soria, E., & Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Molecular Microbiology, 36(1), 244-246, 2000.
    153. Morse, N. J., Wagner, J. M., Reed, K. B., Gopal, M. R., Lauffer, L. H., & Alper, H. S. T7 polymerase expression of guide RNAs in vivo allows exportable CRISPR-Cas9 editing in multiple yeast hosts. ACS Synthetic Biology, 7(4), 1075-1084, 2018.
    154. Moser, F., Espah Borujeni, A., Ghodasara, A. N., Cameron, E., Park, Y., & Voigt, C. A. Dynamic control of endogenous metabolism with combinatorial logic circuits. Molecular Systems Biology, 14(11), e8605, 2018.
    155. Mueller-Cajar, O. The diverse AAA+ machines that repair inhibited RuBisCO active sites. Frontiers in Molecular Biosciences, 4, 31, 2017.
    156. Müller, K., Engesser, R., Metzger, S., Schulz, S., Kämpf, M. M., Busacker, M., Steinberg, T., Tomakidi, P., Ehrbar, M., Nagy, F., Timmer, J., Zubriggen, M. D., & Weber, W. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Research, 41(7), e77-e77, 2013.
    157. Murugan, K., Babu, K., Sundaresan, R., Rajan, R., & Sashital, D. G. The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit. Molecular Cell, 68(1), 15-25, 2017.
    158. Mussolino, C., Morbitzer, R., Lütge, F., Dannemann, N., Lahaye, T., & Cathomen, T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research, 39(21), 9283-9293, 2011.
    159. Mustafa, A., Lougou, B. G., Shuai, Y., Wang, Z., & Tan, H. Current technology development for CO2 utilization into solar fuels and chemicals: A review. Journal of Energy Chemistry, 49, 96-123, 2020.
    160. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D., & Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31(8), 691-693, 2013.
    161. Nielsen, A. A., Segall-Shapiro, T. H., & Voigt, C. A. Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. Current Opinion in Chemical Biology, 17(6), 878-892, 2013.
    162. Nikel, P. I., Zhu, J., San, K. Y., Méndez, B. S., & Bennett, G. N. Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions. Journal of Bacteriology, 191(17), 5538-5548, 2009.
    163. Novick, R. P. Plasmid incompatibility. Microbiological Reviews, 51(4), 381, 1987.
    164. Ogle, J. M., Carter, A. P., & Ramakrishnan, V. Insights into the decoding mechanism from recent ribosome structures. Trends in Biochemical Sciences, 28(5), 259-266, 2003.
    165. Osborn, M. J., Gabriel, R., Webber, B. R., DeFeo, A. P., McElroy, A. N., Jarjour, J., Starker, C. G., Wagner, J. E., Joung, J. K., Voytas, D. F., von Kalle, C., Schmidt, M., Blazar, B. R.,& Tolar, J. Fanconi anemia gene editing by the CRISPR/Cas9 system. Human Gene Therapy, 26(2), 114-126, 2015.
    166. Otten, J., Tenhaef, N., Jansen, R. P., Döbber, J., Jungbluth, L., Noack, S., Oldiges, M., Wiechert, F., & Pohl, M. A FRET-based biosensor for the quantification of glucose in culture supernatants of mL scale microbial cultivations. Microbial Cell Factories, 18(1), 1-10, 2019.
    167. Pang, J. J., Shin, J. S., & Li, S. Y. The Catalytic Role of RuBisCO for in situ CO2 Recycling in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 8, 1278, 2020.
    168. Park, S. Y., Binkley, R. M., Kim, W. J., Lee, M. H., & Lee, S. Y. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metabolic Engineering, 49, 105-115, 2018.
    169. Park, S., Lee, J. U., Cho, S., Kim, H., Oh, H. B., Pack, S. P., & Lee, J. Increased incorporation of gaseous CO2 into succinate by Escherichia coli overexpressing carbonic anhydrase and phosphoenolpyruvate carboxylase genes. Journal of Biotechnology, 241, 101-107, 2017.
    170. Parry, M. A., Keys, A. J., Madgwick, P. J., Carmo-Silva, A. E., & Andralojc, P. J. RuBisCO regulation: a role for inhibitors. Journal of Experimental Botany, 59(7), 1569-1580, 2008.
    171. Peabody, D. S. The RNA binding site of bacteriophage MS2 coat protein. The EMBO Journal, 12(2), 595-600, 1993.
    172. Pickar-Oliver, A., & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nature Reviews Molecular Cell Biology, 20(8), 490-507, 2019.
    173. Pu, J., Zinkus-Boltz, J., & Dickinson, B. C. Evolution of a split RNA polymerase as a versatile biosensor platform. Nature Chemical Biology, 13(4), 432-438, 2017.
    174. Pyne, M. E., Moo-Young, M., Chung, D. A., & Chou, C. P. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Applied and Environmental Microbiology, 81(15), 5103-5114, 2015.
    175. Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173-1183, 2013.
    176. Raven, J. A., Beardall, J., & Sánchez-Baracaldo, P. The possible evolution and future of CO2-concentrating mechanisms. Journal of Experimental Botany, 68(14), 3701-3716, 2017.
    177. Reisch, C. R., & Prather, K. L. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli. Scientific Reports, 5(1), 1-12, 2015.
    178. Rogers, J. K., Guzman, C. D., Taylor, N. D., Raman, S., Anderson, K., & Church, G. M. Synthetic biosensors for precise gene control and real-time monitoring of metabolites. Nucleic Acids Research, 43(15), 7648-7660, 2015.
    179. Roh, K., Bardow, A., Bongartz, D., Burre, J., Chung, W., Deutz, S., Han, D., Hebelmann, M., Kohlhaas, Y., Lee, J. S., Mey, R., Wessling, J. H. & Mitsos, A. Early-stage evaluation of emerging CO2 utilization technologies at low technology readiness levels. Green Chemistry, 22(12), 3842-3859, 2020.
    180. Salehizadeh, H., Yan, N., & Farnood, R. Recent advances in microbial CO2 fixation and conversion to value-added products. Chemical Engineering Journal, 390, 124584, 2020.
    181. Sales, C. R., da Silva, A. B., & Carmo-Silva, E. Measuring RuBisCO activity: challenges and opportunities of NADH-linked microtiter plate-based and 14C-based assays. Journal of Experimental Botany, 71(18), 5302-5312, 2020.
    182. Salis, H. M., Mirsky, E. A., & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 27(10), 946, 2009.
    183. Saltepe, B., Kehribar, E. S., Su Yirmibeşoğlu, S. S., and Şafak Şeker, U. O. Cellular biosensors with engineered genetic circuits. ACS Sensor, 3(1), 13-26, 2018.
    184. Sánchez-Andrea, I., Guedes, I. A., Hornung, B., Boeren, S., Lawson, C. E., Sousa, D. Z., Bar-Even, A., Claassens, N. J. & Stams, A. J. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nature Communications, 11(1), 1-12, 2020.
    185. Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O., & Feist, A. M. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metabolic Engineering, 56, 1-16, 2019.
    186. Satagopan, S., Huening, K. A., & Tabita, F. R. Selection of Cyanobacterial (Synechococcus sp. Strain PCC 6301) RuBisCO variants with improved functional properties that confer enhanced CO2-dependent growth of Rhodobacter capsulatus, a photosynthetic bacterium. MBio, 10(4), 2019.
    187. Satanowski, A., Dronsella, B., Noor, E., Vögeli, B., He, H., Wichmann, P., Erb, T. J., Linder, S. N., & Bar-Even, A. Awakening a latent carbon fixation cycle in Escherichia coli. Nature communications, 11(1), 1-14, 2020.
    188. Sawers, G., & Suppmann, B. Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins. Journal of Bacteriology, 174(11), 3474-3478, 1992.
    189. Sawers, R. G. Differential turnover of the multiple processed transcripts of the Escherichia coli focA-pflB operon. Microbiology, 152(8), 2197-2205, 2006.
    190. Schuller, A., Cserjan-Puschmann, M., Tauer, C., Jarmer, J., Wagenknecht, M., Reinisch, D., Grabherr, R., & Striedner, G. Escherichia coli σ 70 promoters allow expression rate control at the cellular level in genome-integrated expression systems. Microbial Cell Factories, 19(1), 1-11, 2020.
    191. Schwille, P. Bottom-up synthetic biology: engineering in a tinkerer’s world. Science, 333(6047), 1252-1254, 2011.
    192. Segall‐Shapiro, T. H., Meyer, A. J., Ellington, A. D., Sontag, E. D., & Voigt, C. A. A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase. Molecular Systems Biology, 10(7), 742, 2014.
    193. Segall-Shapiro, T. H., Sontag, E. D., & Voigt, C. A. Engineered promoters enable constant gene expression at any copy number in bacteria. Nature Biotechnology, 36(4), 352, 2018.
    194. Seo, S. W., Yang, J. S., Cho, H. S., Yang, J., Kim, S. C., Park, J. M., Kim, S. & Jung, G. Y. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels. Scientific Reports, 4, 4515, 2014.
    195. Shin, J., Zhang, S., Der, B. S., Nielsen, A. A., & Voigt, C. A. Programming Escherichia coli to function as a digital display. Molecular Systems Biology, 16(3), e9401, 2020.
    196. Shis, D. L., & Bennett, M. R. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proceedings of the National Academy of Sciences, 110(13), 5028-5033, 2013.
    197. Show, K. Y., Lee, D. J., & Chang, J. S. Bioreactor and process design for biohydrogen production. Bioresource Technology, 102(18), 8524-8533, 2011.
    198. Silva, F., Queiroz, J. A., & Domingues, F. C. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnology Advances, 30(3), 691-708, 2012.
    199. Siuti, P., Yazbek, J., & Lu, T. K. Synthetic circuits integrating logic and memory in living cells. Nature Biotechnology, 31(5), 448-452, 2013.
    200. Slomovic, S., Pardee, K., & Collins, J. J. Synthetic biology devices for in vitro and in vivo diagnostics. Proceedings of the National Academy of Sciences, 112(47), 14429-14435, 2015.
    201. Soufo, H. J. D., Reimold, C., Linne, U., Knust, T., Gescher, J., & Graumann, P. L. (Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proceedings of the National Academy of Sciences, 107(7), 3163-3168, 2010.
    202. Sousa, R., Chung, Y. J., Rose, J. P., & Wang, B. C. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution. Nature, 364(6438), 593-599, 1993.
    203. St-Pierre, F., Cui, L., Priest, D. G., Endy, D., Dodd, I. B., & Shearwin, K. E. One-step cloning and chromosomal integration of DNA. ACS Synthetic Biology, 2, 537–541, 2013.
    204. Studier, F. W., & Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology, 189(1), 113-130, 1986.
    205. Sung, L. Y., Wu, M. Y., Lin, M. W., Hsu, M. N., Truong, V. A., Shen, C. C., Tu, Y., Hwang, K. Y., Tu, A. P., Chang, Y. H., & Hu, Y. C. Combining orthogonal CRISPR and CRISPRi systems for genome engineering and metabolic pathway modulation in Escherichia coli. Biotechnology and Bioengineering, 116(5), 1066-1079, 2019.
    206. Swarts, D. C., van der Oost, J., & Jinek, M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Molecular Cell, 66(2), 221-233, 2017.
    207. Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E., & Scott, S. S. Distinct form I, II, III, and IV RuBisCO proteins from the three kingdoms of life provide clues about RuBisCO evolution and structure/function relationships. Journal of Experimental Botany, 59(7), 1515-1524, 2008.
    208. Tsuyoshi Takahashi, T., Miyazaki, Y., Makino, T., Kurokawa, Y., Yamasaki, M., Nakajima, S. T., Mori, M., Doki, Y. The clinical trial for photodynamic diagnosis mediated 5-ALA for peritoneal metastasis due to advanced gastric cancer. Journal of Clinical Oncology, 34(4), 71, 2016.
    209. Tan, S. I., & Ng, I. S. Design and optimization of bioreactor to boost carbon dioxide assimilation in RuBisCO-equipped Escherichia coli. Bioresource Technology, 314, 123785, 2020a.
    210. Tan, S. I., & Ng, I. S. New insight into plasmid-driven T7 RNA polymerase (PDT7) in Escherichia coli and used as genetic amplifier for biosensor. ACS Synthetic Biology, 9(3), 613-622, 2020b.
    211. Tan, S. I., Han, Y. L., Yu, Y. J., Chiu, C. Y., Chang, Y. K., Ouyang, S., Fan, K. C., Lo, K. H. & Ng, I. S. Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase. Process Biochemistry, 73, 38-46, 2018.
    212. Tan, S. I., Ng, I. S., & Yu, Y. J. Heterologous expression of an acidophilic multicopper oxidase in Escherichia coli and its applications in biorecovery of gold. Bioresources and Bioprocessing, 4(1), 20, 2017.
    213. Tan, S. I., You, S. C., Shih, I. T., & Ng, I. S. Quantification, regulation and production of 5-aminolevulinic acid by green fluorescent protein in recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 129(4), 387-394, 2020a.
    214. Tan, S. I., Yu, P. J., & Ng, I. S. CRISPRi‐mediated programming essential gene can as a direct enzymatic performance evaluation & determination (DEPEND) system. Biotechnology and Bioengineering, 117(9), 2842-2851, 2020b.
    215. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S., & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159(3), 635-646, 2014.
    216. Tang, Q., Lu, T., & Liu, S. J. Developing a synthetic biology toolkit for Comamonas testosteroni, an emerging cellular chassis for bioremediation. ACS Synthetic Biology, 7(7), 1753-1762, 2018.
    217. Temiakov, D., Mentesana, P. E., Ma, K., Mustaev, A., Borukhov, S., & McAllister, W. T. The specificity loop of T7 RNA polymerase interacts first with the promoter and then with the elongating transcript, suggesting a mechanism for promoter clearance. Proceedings of the National Academy of Sciences, 97(26), 14109-14114, 2000.
    218. Temme, K., Hill, R., Segall-Shapiro, T. H., Moser, F., & Voigt, C. A. Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Research, 40(17), 8773-8781, 2012.
    219. Thakur, I. S., Kumar, M., Varjani, S. J., Wu, Y., Gnansounou, E., & Ravindran, S. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: opportunities and challenges. Bioresource Technology, 256, 478-490, 2018.
    220. Tizei, P. A., Csibra, E., Torres, L., & Pinheiro, V. B. Selection platforms for directed evolution in synthetic biology. Biochemical Society Transactions, 44(4), 1165-1175, 2016.
    221. Tsai, M. J., Wang, J. R., Yang, C. D., Kao, K. C., Huang, W. L., Huang, H. Y., Tseng, C. P., Huang, H. D., & Ho, S. Y. PredCRP: predicting and analysing the regulatory roles of CRP from its binding sites in Escherichia coli. Scientific Reports, 8(1), 1-9, 2018.
    222. Tsai, Y. C. C., Lapina, M. C., Bhushan, S., & Mueller-Cajar, O. Identification and characterization of multiple RuBisCO activases in chemoautotrophic bacteria. Nature communications, 6(1), 1-10, 2015.
    223. Tsai, Y. C. C., Ye, F., Liew, L., Liu, D., Bhushan, S., Gao, Y. G., & Mueller-Cajar, O. Insights into the mechanism and regulation of the CbbQO-type RuBisCO activase, a MoxR AAA+ ATPase. Proceedings of the National Academy of Sciences, 117(1), 381-387, 2020.
    224. Tseng, I. T., Chen, Y. L., Chen, C. H., Shen, Z. X., Yang, C. H., & Li, S. Y. Exceeding the theoretical fermentation yield in mixotrophic RuBisCO-based engineered Escherichia coli. Metabolic Engineering, 47, 445-452, 2018.
    225. Turan, S., Galla, M., Ernst, E., Qiao, J., Voelkel, C., Schiedlmeier, B., Zehe, C., & Bode, J. Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. Journal of Molecular Biology, 407(2), 193-221, 2011.
    226. Tyo, K. E., Ajikumar, P. K., & Stephanopoulos, G. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nature Biotechnology, 27(8), 760-765, 2009.
    227. Voigt, C. A. Synthetic biology, 2012.
    228. von Borzyskowski, L. S., Carrillo, M., Leupold, S., Glatter, T., Kiefer, P., Weishaupt, R., Heinemann, M. & Erb, T. J. An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1. Metabolic Engineering, 47, 423-433, 2018.
    229. Waegeman, H., Beauprez, J., Moens, H., Maertens, J., De Mey, M., Foulquié-Moreno, M. R., Heijnen, J. J., Charlier, D., & Soetaert, W. Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiology, 11(1), 1-17, 2011.
    230. Wan, X., Volpetti, F., Petrova, E., French, C., Maerkl, S. J., & Wang, B. Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nature Chemical Biology, 15(5), 540-548, 2019.
    231. Wang, B., Barahona, M., & Buck, M. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosensors and Bioelectronics, 40(1), 368-376, 2013.
    232. Wang, B., Zhang, X., Yu, X., Cui, Z., Wang, Z., Chen, T., & Zhao, X. Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production. Applied Microbiology and Biotechnology, 103(5), 2155-2170, 2019a.
    233. Wang, H. C., & Lee, A. R. Recent developments in blood glucose sensors. Journal of Food and Drug Analysis, 23(2), 191-200, 2015.
    234. Wang, H., Nakamura, M., Abbott, T. R., Zhao, D., Luo, K., Yu, C., Nguyen, C. M., Lo, A., Daley, T. P., La Russa, M., Liu, Y., & Qi, L. S. CRISPR-mediated live imaging of genome editing and transcription. Science, 365(6459):1301-1305, 2019b.
    235. Wang, T., Badran, A. H., Huang, T. P., & Liu, D. R. Continuous directed evolution of proteins with improved soluble expression. Nature Chemical Biology, 14(10), 972, 2018a.
    236. Wang, T., Guan, C., Guo, J., Liu, B., Wu, Y., Xie, Z., Zhang, C. & Xing, X. H. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nature Communications, 9(1), 1-15, 2018b.
    237. Wang, W., Li, Y., Wang, Y., Shi, C., Li, C., Li, Q., & Linhardt, R. J. Bacteriophage T7 transcription system: an enabling tool in synthetic biology. Biotechnology Advances, 36(8), 2129-2137, 2018c.
    238. Wang, Y., Fan, L., Tuyishime, P., Zheng, P., & Sun, J. Synthetic methylotrophy: a practical solution for methanol-based biomanufacturing. Trends in Biotechnology, 38(6), 650-666, 2020a.
    239. Wang, Z. W., Gong, C. J., & He, Y. C. Improved biosynthesis of 5-hydroxymethyl-2-furancarboxylic acid and furoic acid from biomass-derived furans with high substrate tolerance of recombinant Escherichia coli HMFOMUT whole-cells. Bioresource Technology, 303, 122930, 2020b.
    240. Webster, G. R., Teh, A. Y. H., & Ma, J. K. C. Synthetic gene design—The rationale for codon optimization and implications for molecular pharming in plants. Biotechnology and Bioengineering, 114(3), 492-502, 2017.
    241. Whitaker, W. B., Sandoval, N. R., Bennett, R. K., Fast, A. G., & Papoutsakis, E. T. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Current Opinion in Biotechnology, 33, 165-175, 2015.
    242. Whiting, D. R., Guariguata, L., Weil, C., & Shaw, J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94(3), 311-321, 2011.
    243. Wilbur, K. M., & Anderson, N. G. Electrometric and colorimetric determination of carbonic anhydrase. Journal of Biological Chemistry, 176(1), 147-154, 1948.
    244. Williams, T. C., Pretorius, I. S., & Paulsen, I. T. Synthetic evolution of metabolic productivity using biosensors. Trends in Biotechnology, 34(5), 371-381, 2016.
    245. Woo, S. G., Moon, S. J., Kim, S. K., Kim, T. H., Lim, H. S., Yeon, G. H., Sung, B. H., Lee, C. H., Lee, S. G., Hwang, J. H., & Lee, D. H. A designed whole-cell biosensor for live diagnosis of gut inflammation through nitrate sensing. Biosensors and Bioelectronics, 168, 112523, 2020.
    246. Wu, P., Chen, Y., Liu, M., Xiao, G., & Yuan, J. Engineering an optogenetic crispri platform for improved chemical production. ACS Synthetic Biology, 10(1), 125-131, 2020.
    247. Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D., & Li, J. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 13(6), 659-662, 2013.
    248. Xiao, Y., Bowen, C. H., Liu, D., & Zhang, F. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nature Chemical Biology, 12(5), 339-344, 2016.
    249. Xie, F., Ye, L., Chang, J. C., Beyer, A. I., Wang, J., Muench, M. O., & Kan, Y. W. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Research, 24(9), 1526-1533, 2014.
    250. Xu, X., Li, X., Liu, Y., Zhu, Y., Li, J., Du, G., Chen, J., Ledesma-Amaro, R., & Liu, L. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nature Chemical Biology, 16(11), 1261-1268, 2020.
    251. Xue, C., Hsu, K. M., Ting, W. W., Huang, S. F., Lin, H. Y., Li, S. F., Chang, J. S. & Ng, I. S. Efficient biotransformation of L-lysine into cadaverine by strengthening pyridoxal 5’-phosphate-dependent proteins in Escherichia coli with cold shock treatment. Biochemical Engineering Journal, 161, 107659, 2020.
    252. Yang, C. H., Liu, E. J., Chen, Y. L., Ou-Yang, F. Y., & Li, S. Y. The comprehensive profile of fermentation products during in situ CO2 recycling by RuBisCO-based engineered Escherichia coli. Microbial Cell Factories, 15(1), 1-10, 2016a.
    253. Yang, D., Yoo, S. M., Gu, C., Ryu, J. Y., Lee, J. E., & Lee, S. Y. Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown. Metabolic Engineering, 54, 180-190, 2019a.
    254. Yang, H., Gao, P., Rajashankar, K. R., & Patel, D. J. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell, 167(7), 1814-1828, 2016b.
    255. Yang, J., Kim, B., Kim, G. Y., Jung, G. Y., & Seo, S. W. Synthetic biology for evolutionary engineering: from perturbation of genotype to acquisition of desired phenotype. Biotechnology for Biofuels, 12(1), 1-14, 2019b.
    256. Yang, J., Seo, S. W., Jang, S., Shin, S. I., Lim, C. H., Roh, T. Y., & Jung, G. Y. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nature communications, 4(1), 1-7, 2013.
    257. Yang, P., Liu, W., Cheng, X., Wang, J., Wang, Q., & Qi, Q. A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Applied and Environmental Microbiology, 82(9), 2709-2717, 2016c.
    258. Yin, H., Xue, W., Chen, S., Bogorad, R. L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P. A., Jacks, T., & Anderson, D. G. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 32(6), 551-553, 2014.
    259. Yishai, O., Bouzon, M., Döring, V., & Bar-Even, A. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synthetic Biology, 7(9), 2023-2028, 2018.
    260. Yokobayashi, Y., Weiss, R., & Arnold, F. H. Directed evolution of a genetic circuit. Proceedings of the National Academy of Sciences, 99(26), 16587-16591, 2002.
    261. Yosef, I., Irihimovitch, V., Knopf, J. A., Cohen, I., Orr-Dahan, I., Nahum, E., Keasar, C., & Shapira, M. RNA binding activity of the ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit from Chlamydomonas reinhardtii. Journal of Biological Chemistry, 279(11), 10148-10156, 2004.
    262. Yu, H., & Liao, J. C. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds. Nature communications, 9(1), 1-10, 2018.
    263. Yu, T. H., Yi, Y. C., Shih, I. T., & Ng, I. S. Enhanced 5-aminolevulinic acid production by co-expression of codon-optimized hemA gene with chaperone in genetic engineered Escherichia coli. Applied Biochemistry and Biotechnology, 191(1), 299-312, 2019.
    264. Zeldes, B. M., Keller, M. W., Loder, A. J., Straub, C. T., Adams, M. W., & Kelly, R. M. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Frontiers in Microbiology, 6, 1209, 2015.
    265. Zhang, J., Kang, Z., Chen, J., & Du, G. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Scientific Reports, 5(1), 1-7, 2015.
    266. Zhang, J., Weng, H., Zhou, Z., Du, G., & Kang, Z. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Bioresource Technology, 274, 353-360, 2019.
    267. Zhang, X. C., Guo, Y., Liu, X., Chen, X. G., Wu, Q., & Chen, G. Q. Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli. Metabolic Engineering, 45, 32-42, 2018.
    268. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P., & del Cardayré, S. B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415(6872), 644-646, 2002.
    269. Zhao, H., Zhang, H. M., Chen, X., Li, T., Wu, Q., Ouyang, Q., & Chen, G. Q. Novel T7-like expression systems used for Halomonas. Metabolic Engineering, 39, 128-140, 2017.
    270. Zheng, Y., Meng, F., Zhu, Z., Wei, W., Sun, Z., Chen, J., Yu, B., Lou, C. & Chen, G. Q. A tight cold-inducible switch built by coupling thermosensitive transcriptional and proteolytic regulatory parts. Nucleic Acids Research, 47(21), e137-e137, 2019.
    271. Zhu, L. W., Zhang, L., Wei, L. N., Li, H. M., Yuan, Z. P., Chen, T., Tang, Y. L., Liang, X. H., & Tang, Y. J. Collaborative regulation of CO2 transport and fixation during succinate production in Escherichia coli. Scientific Reports, 5(1), 1-12, 2015.
    272. Zhuang, G. C., Lin, Y. S., Bowles, M. W., Heuer, V. B., Lever, M. A., Elvert, M., & Hinrichs, K. U. Distribution and isotopic composition of trimethylamine, dimethylsulfide and dimethylsulfoniopropionate in marine sediments. Marine Chemistry, 196, 35-46, 2017.
    273. Zhuang, Z. Y., & Li, S. Y. RuBisCO-based engineered Escherichia coli for in situ carbon dioxide recycling. Bioresource Technology, 150, 79-88, 2013.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE