| 研究生: |
林永巨 Lin, Yong-Jyu |
|---|---|
| 論文名稱: |
氧化鋁-水奈米流體於水平圓管中之紊流熱傳特性與壓降實驗研究 Experimental Study on Turbulent Heat Transfer Characteristics and Pressure Loss of Alumina-Water Nanofluid Through a Horizontal Circular Tube |
| 指導教授: |
何清政
Ho, Ching-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 奈米流體 、紊流強制對流 、對流熱傳遞增益 、進口溫度 |
| 外文關鍵詞: | Nanofluid, Turbulent Force Convection, Heat Convectional Enhancement, Inlet Temperature |
| 相關次數: | 點閱:119 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在以實驗方式,探討改變進口溫度對一水平圓管內氧化鋁/水奈米流體其紊流強制對流熱傳遞效益與壓降特性之影響。強制對流實驗所採用圓管尺寸為內徑3.4 mm,厚度0.3 mm與長度1300 mm,其中加熱段長度為400 mm,係以電阻加熱方式建構等熱通量管壁條件,而所探討相關參數及其範圍為:進口溫度 Tin = 25℃、37℃及50℃;雷諾數Renf = 3000-12000;及氧化鋁/水奈米流體之氧化鋁微粒質量分率ω_np = 0、2 、5和10 wt.% 。實驗結果顯示質量分率2 wt.%之奈米流體呈現最佳熱傳遞效益;當進口溫度從25 ℃提高至50 ℃,其紊流強制對流平均熱傳係數相較於純水之增益可從20%上升至30%,壓降亦同時呈現下降趨勢。
This study aims to explore experimentally the influence of inlet temperature on the turbulent forced convective heat transfer effectivenessof using alumina-water nanofluid over the pure water in an iso-fluxe heated horizontal circular tube. A copper circular pipe of inner diameter 3.4 mm was used in the forced convection experiments undertaken for the pertinent parameters in the following ranges: the inlet temperature, Tin = 25 ℃, 37 ℃ and 50℃; the Reynolds number, Renf = 3000 – 12000; the mass fraction of the alumina naoprticles in the nanofluid formulated, ωnp = 0, 2, 5 and 10 wt.%. The experimental results clearly showed that the turbulent convective heat transfer effectiveness of the alumina-water nanofluid over that of the pure water can be further uplifted by increasing the inlet temperature to the circular tube; specifically, an increase in the averaged heat transfer enhancement up to 30% arises for the nanofluid of ωnp = 2 wt.% with a significantly lower pressure drop as the inlet temprature is increased from 25C to 50C.
Al-Arabi, M., (1982), Turbulent heat transfer in thr entrance region og a tube, Heat Transfer Engineering, vol. 3, pp. 76-83.
Amrollahi, A., Rashidi, A. M., Lotfi, R., Emami Meibodi, M., Kashefi, K. (2010), convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region☆, International Communications in Heat and Mass Transfer, vol. 37, pp.717-723.
Breen, T. J., Walsh, E. J., Punch, J., Shah, A. J., and Bash, C. E. (2011), From chip to cooling tower data center modeling: influence of Server inlet temperature and temperature rise across cabinet, Journal of Electronic Packaging, vol. 133, pp.011004.
Bhatti, M. S., and Shah, R. K. (1987), in KaKac, S., Shah, R. K., and Aung, W., Eds.,Handbook of Single-Phase Convective Heat Transfer, Chap. 4, Wiley -interscience, New York.
Corcione, M. (2011), Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conversion and Management, vol. 52, pp.789-793.
Duangthongsuk, W., and Wongwises, S. (2010a), Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance, Experimental Thermal and Fluid Science, vol. 34, pp. 616-624.
Duangthongsuk, W., and Wongwises, S. (2010b), An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime, International Journal of Heat and Mass Transfer, vol. 53, pp.334-344.
Fotukian, S. M., and Nasr Esfahany, M. (2010a), Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube, International Journal of Heat and Fluid Flow, vol. 31, pp.606-612.
Fotukian, S. M., and Nasr Esfahany, M. (2010b), Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube☆, International Communications in Heat and Mass Transfer, vol. 37, pp.214-219.
Ghajar, A. J., Tang, C. C., and Cook, W. L. (2010), Experimental investigation of friction factor in the transition region for water flow in minitubes and microtubes, Heat Transfer Engineering, vol. 31, pp.646-657.
Ho, C. J., Huang, J. B., Tsai, P. S., and Yang, Y. M. (2011), On laminar convective cooling performance of hybrid water-based suspensions of Al2O3 nanoparticles and MEPCM particles in a circular tube, International Journal of Heat and Mass Transfer, vol. 54, pp.2397-2407.
Incropera, F.P., DeWitt, D.P., (2007), Fundanmentals of heat amd mass transfer. sixth ed., John Wiley & Sons, New York, pp.486–515.
Liao, L., and Liu, Z. H. (2009), Forced convective flow drag and heat transfer characteristics of carbon nanotube suspensions in a horizontal small tube, Heat and Mass Transfer, vol. 45, pp.1129-1136.
Liu, Z. H., and Liao, L. (2010), Forced convective flow and heat transfer characteristics of aqueous drag-reducing fluid with carbon nanotubes added, International Journal of Thermal Sciences, vol. 49, pp. 2331-2338.
Sarkar, J. (2011), A critical review on convective heat transfer correlations of nanofluids, Renewable and Sustainable Energy Reviews, vol. 15, 3271-3277.
,