研究生: |
謝宜軒 Shieh, Yi-Shuan |
---|---|
論文名稱: |
鈮酸鋰薄膜之研究 The research of LiNbO3 thin film |
指導教授: |
張炎輝
Chang, Yan-Hwang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 薄膜 、鈮酸鋰 |
外文關鍵詞: | LiNbO3, film |
相關次數: | 點閱:43 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用射頻磁控濺鍍(RF Magnetron Sputtering )系統成長鈮酸鋰薄膜於矽基板及單晶氧化鋁基板上。固定濺射功率以及靶材與基板之間距,改變氧氣與Ar混合比例、成長溫度,探討製程參數對於鈮酸鋰薄膜成長之影響。以X-ray、SEM、TEM等儀器分析沉積薄膜之結構以及表面型態,並觀察經由不同氣氛下退火之結晶結構與表面型態之差異。
實驗結果顯示,矽基板成長鈮酸鋰薄膜在溫度500℃、混合Ar/O2為 8/2時,可得到最佳優選方向之結晶結構。在單晶氧化鋁基板上沉積在450℃以上、混合氣氛8/2及6/4皆可得到有優選方向之鈮酸鋰薄膜結構,經過氧氣氛中500℃持溫2小時之熱處理條件,強化(006)面之優選方向,且穿透率可由56%提升至68%;在矽基板上成長之薄膜無法在熱處理之後保有鈮酸鋰結構,而轉為缺鋰相存在。
由電滯曲線量測確認薄膜的確具有鐵電現象,且在氧氣氛分壓為20%、500℃下成長之鈮酸鋰薄膜,因其結構異向性及結晶性質較佳而呈現較強之鐵電相電滯曲線。
LiNbO3 thin films were deposition on Si and Sapphire substrate by RF Sputtering deposition technique. The growth temperature and Ar/O2 gas ratio were varied during the deposition of LiNbO3. The power was 150W and the distance between target and substrate was 45mm. The microstructuce and surface morphology were examined by using α–step, Scanning electron microscopy, transmission electron microscopy and X-ray diffractionmetry.
The LiNbO3 thin film on Si substrate growth at 500℃, Ar/O2 ratio was 8/2, would be better preferred orientation at C-axis. On sapphire substrate, when the growth temperature was above 450℃, it would be easy to get preferred orientation at Ar/O2 ratio of 8/2 and 6/4. Post annealing at 500℃、2 hours in O2 atmosphere would increased the LiNbO3 preferred orientation. But the LiNbO3 on Si substrate transform to Li deficiencies phase. The ferroelectric property was measured by P-E Curve, film growth at 500℃, gas ratio Ar/O2 = 8/2, have better polarization and hysetersis.
1. W. H. Zachariasen, Skr. Norske Vid-Ada, Oslo, Mat. Naturv. No.4 (1928)
2. A. A. Ballman, J. American Ceram.Soc.48, (1965) p112.
3. A. Yeh, and P. Yeh, “Optical waves in crystals”, Wiley, New York (1984)
4. M. Haruna, J. Tsutumi, Y. Segawa, H. Nishhara, SPIE 2045, (1994) p133.
5. B. T. Matthias and J. P. Remeika, Ferroelectricity in the materials by the Czochralski technique, J. American Cream. Soc.48, (1965) p112.
6. P. Lener, C. Legras et J. P. Duman, Stoechiometric des monocristanx de metaniobate delithium, J. Crystal Growth 3/4 (1968) p231.
7. S. C. Abrahams, J. M. Reddy and J. L. Bernstein, Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24℃, J. Phys. Chem. Solids 27, (1966) p997.
8. S. C. Abrahams, W. C. Hamilton and J.M. Reddy, Ferroelectric lithium nibate. 4. Single crystal X-ray diffraction study at 24℃ and 1200℃, J. Phys. Chem. Solids 27, (1966) p1019.
9. S. C. Abrahams, H. J. Levinstein and J. M. Reddy, Ferroelectric lithium niobate. 5. Single crystal X-ray diffraction study between 24℃ and 1200℃, J. Phys. Chem. Solids 27, (1966) p1019.
10. S. C. Abrahams and P. Marsh, Defect structure dependence on composition in lithium niobate, Acta Cryst. B42, (1986) p61.
11. K. Nassauand M. E. Lines, Stacking fault model for Stoichiometry deviation in LiNbO3 and LiTaO3 and the effect on the Curie temperature, J. Appl. Phys. 41, (1970) p533.
12. M. V. Hobden and J. Warner, The temperature Dependence of the refractive indices of pure lithium niobate, Phys. Lett.22, (1966) p243.
13. J. D. Zook, D. chen and G. N. Otto, Temperature depencence and modal of the electrio-optic effect in LiNbO3, Appl. Phys. Lett.11, (1967) p159.
14. M. M. Choy and R. L. Byer, Accurate second–order Susceptibility measurements of visible and infrared nonlinear crystals, Phys. Rev. B14 (1976) p1693.
15. C. J. G. Kirby, in Properties of LiNbO3, EMI Datareview Series No.5, INSPEC, London (1989)
16. A. Garcia-Cabanes, J. A. Sanz-Garcia, J. M. Cabrera, F. Agullo-Lopez, C. Zaldo, R. Parja, K. Polgar, K. Rakanyi and I. Foldvari, Phys. Rev. B37, (1988) p6085.
17. I. Foldvari, K. Polgar, and A. Meceski, Acta Phys. Hung. 55, (1984) p321.
18. J. G.. Bergman, A. Ashin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein and R. G. Smith, Appl. Phys. Letter 12, (1968) p92.
19. N. V. Kukhtarev, Kinetic of hdogram recording and erasure in electro optic crystal, Sov. Tech. Phys. Lett. 2, (1976) p438.
20. B. Gross, B. Grycz and K. Miklossy, “Plasma Technology”, American Elsevier Publishing, (1969) p354.
21. S. H. Rossnagel, J. Vac. Sci. Technol., A6, (1988) p19 .
22. J. L. Vossen and K. Werner, “Thin film Process”, Academic press, (1978) p23.
23. D. W. Hoffman, J. Vac. Sci. Technol., A3, (1985) p561.
24. 楊錦張, 基礎濺鍍電漿, 電子發展月刊 Vol.68, (1983) p31.
25. W. kiyotaka and H. Shieru, “Handbook of sputter deposition technology”, Noyes Publishing, (1991) p10.
26. J. A. Thornton, J. Vac. Sci. Technol., Vol. 11, No.4, (1974) p666.
27. D. Henderson, M. H. Brosdky and P. Chaudhari, Appl. Phys. Lett., Vol.25, (1974) p641.
28. A. G. Dirks and H. J. Leamy, Thin Solid Films, Vol.47, (1977) p219
29. R. Messier, A. P. Giri and R. A. Roy, J. Vac. Sci. Technol., A2(2), (1984) p500.
30. O. Auciello and J. Engemann(eds), “Miltilayered Thin Film for Advanced Microtechnologies ”, Kluwer Academic Publish ing, (1993) p129.
31. S. M. Rossnagel, J. J. Cuomo, AVS. Soc. Symp. Proc., Vol.165, (1988) p106.
32. D. Theirich and J. Engemann, Nucl. Inst. and Meth. B, 59/60, (1991) p336.
33. A. Yariv, P. Yeh, Optical Wave in Crystals, Wiley, New York (1984) p220.
34. C. J. Kirkly, Ferroelectrics, 37, (1981) p567.
35. 李金宏,橢圓偏光儀簡介,量測資訊,第66期, (1999.3) p38.
36. B. D. Cullity,”Diffraction I: Direction of Diffraction Beams” Element of X-Ray Diffraction, Second edition (1978).
37. C. V. Thompson and R. Carel, Materials Science and Engineering, B32, (1995) p211.
38. 胡榮章, ”MgO-LiNbO3單晶成長及其特性研究”, 成功大學博士論文, (1991) p161.
39. F. Agullo-Lopez, J. M. Carbrera, F. Agullo-Rueda,”Electrooptics: phenomena, materials and applications”, Academic press, London (1994) p35.
40. F. Agullo-Lopez, J. M. Carbrera, F. Agullo-Rueda,”Electrooptics: phenomena, materials and applications”, Academic press, London (1994) p286.