| 研究生: |
吳定和 Wu, Ting-Ho |
|---|---|
| 論文名稱: |
基於自發四波混頻原子的高純度預報型單光子源 Heralded Single-Photon Source with High Purity Based on Spontaneous Four-Wave Mixing Atoms |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 自發四波混頻 、單光子源 、電磁波引發透明 |
| 外文關鍵詞: | spontaneous four-wave mixing, single-photon source, electromagnetically-induced-transparency |
| 相關次數: | 點閱:223 下載:32 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單光子源研究為量子光學的核心要素之一,而單光子源的產生效率及訊號提升一直是科學家追求的目標。本論文便是著重於產生高純度的單光子源,我們運用基於電磁波引發透明的自發四波混頻系統,在冷原子系統中產生一對具有時間關聯性的雙光子對,並且可利用格勞伯(Roy J. Glauber)提出的二階關聯性函數(second-order correlation function)解析兩顆光子之間的關聯性。在我們的觀察下,在光學密度(OD)為10,驅動光拉比頻率(Rabi frequency)1Γ、耦合光拉比頻率4Γ的情況,其符合計數之訊號背景比高達61,產生率為2.3×10^5每秒;而若改變驅動光拉比頻率為2$Gamma$,其訊號背景比約為25,產生率可達到9.1×10^5每秒,顯現其具有高度的量子特性及良好的產生效率。
Single-photon source is an essential building block in quantum information sciences. In this thesis, we demonstrate the generation of the high purity, correlated single-photon sources through electromagnetically-induced-transparency (EIT)-based spontaneous four-wave mixing (SFWM) in cold atomic ensemble. In experiment, time correlations between the generated Stokes and anti-Stokes photons are measured using Glauber second-order correlation function. Under an optical depth (OD) of 10 , we observe the photon pair generation of around 9.1×10^5. Moreover, high purity paired photon sources with a signal- to-background ratio (SBR) of 61 are obtained by further decreasing the driving Rabi frequency. All the experimental results are in good agreement with the theoretical predictions.
[1]Michelson, Albert A., and Edward W. Morley. "On the Relative Motion of the Earth and of the Luminiferous Ether." Sidereal Messenger, vol. 6, 306-310 (1887).
[2]Lorentz, Hendrik Antoon, "De relatieve beweging van de aarde en den aether." Amsterdam, Zittingsverslag Akad. v. Wet., 1, 74 (1892).
[3]Einstein, Albert. "Zur elektrodynamik bewegter körper." Annalen der physik 4 (1905).
[4]Planck, Max. The theory of heat radiation. Blakiston, (1914).
[5]Arute, F., Arya, K., Babbush, R. et al.,“Quantum supremacy using a programmable superconducting processor,”Nature 574, 505–510 (2019).
[6]Scarani, Valerio, et al. "The security of practical quantum key distribution." Reviews of modern physics 81.3,1301 (2009).
[7]Renner, Renato. "Security of quantum key distribution." International Journal of Quantum Information 6.01,1-127 (2008).
[8]Sasaki, Masahide, et al. "Field test of quantum key distribution in the Tokyo QKD Network." Opt. express 19.11,10387-10409 (2011): .
[9]R. Ghosh and L. Mandel,“Observation of nonclassical effects in the interference of two photons,”Phys. Rev. Lett. 59, 1903 (1987).
[10]T. E. Keller and M. H. Rubin,“Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,”Phys. Rev. A 56, 1534 (1997).
[11]S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken,“Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion,”Phys. Rev. A 69, (2004).
[12]Z. Y. Ou and Y. J. Lu,“Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons,”Phys. Rev. Lett. 83, 2556 (1999).
[13]M. Oberparleiter, and H. Weinfurter,“Cavity-enhanced generation of polarization-entangled photon pairs,”Opt. Commun. 183, 133 (2000).
[14]C. E. Kuklewicz, F. N. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,”Phys. Rev. Lett. 97, 223601 (2006).
[15]R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston,“Correlated photon pairs generated from a warm atomic ensemble,”Phys. Rev. A 82, 053842 (2010).
[16]R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston,“Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble,”Opt. Express 19, 14632 (2011).
[17]D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, G. C. and Guo,“Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,”Opt. Express 20, 11433 (2012).
[18]B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer,“Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,”Phys. Rev. Lett. 111, 123602 (2013).
[19]V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris,“Generation of Paired Photons with Controllable Waveforms,”Phys. Rev. Lett. 94, 183601 (2005).
[20]P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris,“Generation of Narrow-Bandwidth Paired Photons: Use of a Single Driving Laser,”Phys. Rev. Lett. 97, 113602 (2006).
[21]H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du,“Generation of Narrow-Band Hyperentangled Nondegenerate Paired Photons,”Phys. Rev. Lett. 106, 033601 (2011).
[22]S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du,“Optical Precursor of a Single Photon,”Phys. Rev. Lett. 106, 243602 (2011).
[23]J. Mckeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble,“Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,”Science 303, 1992 (2004).
[24]T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe,“Single-atom single-photon quantum interface,”Science 317, 488 (2007).
[25]V. Leong, M. A. Seidler, M. Steiner, A. Cere, and C. Kurtsiefer,“Time-resolved scattering of a single photon by a single atom,”Nat. Commun. 7, 13716 (2016).
[26]Waung, I-Chia, "Biphoton generation using spontaneous four-wave mixing in cold atoms" (2022)
[27]Jia-Juan, Lee, "Full quantum theory of double-Λ four-wave mixing based on electromagnetically induced transparency" (2019)
[28]Wang, Tsai-Ni, "Quasi-phase-matching slow light propagation in efficient four-wave mixing media" (2020)
[29]Su, Po-Ching, "Atomic Raman Memory for Generation of Correlated Photon Pairs" (2010)
[30]Cheng, Yu-Wei, "Setup and Optimization of Rubidium Magneto-optical Trap" (2009)
[31]Zhong, Han-Sen, et al. "Quantum computational advantage using photons." Science 370, 1460-1463 (2020).