簡易檢索 / 詳目顯示

研究生: 吳定和
Wu, Ting-Ho
論文名稱: 基於自發四波混頻原子的高純度預報型單光子源
Heralded Single-Photon Source with High Purity Based on Spontaneous Four-Wave Mixing Atoms
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 86
中文關鍵詞: 自發四波混頻單光子源電磁波引發透明
外文關鍵詞: spontaneous four-wave mixing, single-photon source, electromagnetically-induced-transparency
相關次數: 點閱:223下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單光子源研究為量子光學的核心要素之一,而單光子源的產生效率及訊號提升一直是科學家追求的目標。本論文便是著重於產生高純度的單光子源,我們運用基於電磁波引發透明的自發四波混頻系統,在冷原子系統中產生一對具有時間關聯性的雙光子對,並且可利用格勞伯(Roy J. Glauber)提出的二階關聯性函數(second-order correlation function)解析兩顆光子之間的關聯性。在我們的觀察下,在光學密度(OD)為10,驅動光拉比頻率(Rabi frequency)1Γ、耦合光拉比頻率4Γ的情況,其符合計數之訊號背景比高達61,產生率為2.3×10^5每秒;而若改變驅動光拉比頻率為2$Gamma$,其訊號背景比約為25,產生率可達到9.1×10^5每秒,顯現其具有高度的量子特性及良好的產生效率。

    Single-photon source is an essential building block in quantum information sciences. In this thesis, we demonstrate the generation of the high purity, correlated single-photon sources through electromagnetically-induced-transparency (EIT)-based spontaneous four-wave mixing (SFWM) in cold atomic ensemble. In experiment, time correlations between the generated Stokes and anti-Stokes photons are measured using Glauber second-order correlation function. Under an optical depth (OD) of 10 , we observe the photon pair generation of around 9.1×10^5. Moreover, high purity paired photon sources with a signal- to-background ratio (SBR) of 61 are obtained by further decreasing the driving Rabi frequency. All the experimental results are in good agreement with the theoretical predictions.

    摘要 i 英文延伸摘要 ii 誌謝 vii 目錄 x 表格 xii 圖片 xiii 第1章. 緒論 1 1.1. 簡介 1 1.2. 研究動機 2 第2章. 理論模型 3 2.1. 二能階系統 3 2.1.1. 密度矩陣 3 2.1.2. 光學布拉赫方程式 4 2.1.3. 馬克士威—薛丁格方程式 6 2.1.4. 二能階吸收 9 2.2. 電磁波引發透明 15 2.3. 雙光子對 20 2.3.1. 自發四波混頻系統 20 2.3.2. 海森堡—朗之萬方程式及其解 23 2.3.3. 馬克士威—薛丁格方程式及其解 32 2.3.4. 雙光子對產生率及其關聯性函數 37 第3章. 實驗系統 42 3.1. 實驗系統簡介 42 3.1.1. 銣原子能階 44 3.2. 光路架設與能階 46 3.2.1. 標準量具濾波器 51 3.3. 時序設計與控制 53 3.3.1. EIT時序 54 3.3.2. 雙光子產生時序 55 第4章. 結果與討論 56 4.1. 數據獲取 56 4.1.1. 脈衝計數 57 4.1.2. 延遲觸發 57 4.2. 實驗結果 58 4.2.1. 背景分析 58 4.2.2. 數據分析 62 4.2.3. 討論 78 第5章. 結論與展望 79 參考文獻 80 附錄A. 二階關聯性函數 83 附錄B. 雙光子實驗的暗態討論 85

    [1]Michelson, Albert A., and Edward W. Morley. "On the Relative Motion of the Earth and of the Luminiferous Ether." Sidereal Messenger, vol. 6, 306-310 (1887).
    [2]Lorentz, Hendrik Antoon, "De relatieve beweging van de aarde en den aether." Amsterdam, Zittingsverslag Akad. v. Wet., 1, 74 (1892).
    [3]Einstein, Albert. "Zur elektrodynamik bewegter körper." Annalen der physik 4 (1905).
    [4]Planck, Max. The theory of heat radiation. Blakiston, (1914).
    [5]Arute, F., Arya, K., Babbush, R. et al.,“Quantum supremacy using a programmable superconducting processor,”Nature 574, 505–510 (2019).
    [6]Scarani, Valerio, et al. "The security of practical quantum key distribution." Reviews of modern physics 81.3,1301 (2009).
    [7]Renner, Renato. "Security of quantum key distribution." International Journal of Quantum Information 6.01,1-127 (2008).
    [8]Sasaki, Masahide, et al. "Field test of quantum key distribution in the Tokyo QKD Network." Opt. express 19.11,10387-10409 (2011): .
    [9]R. Ghosh and L. Mandel,“Observation of nonclassical effects in the interference of two photons,”Phys. Rev. Lett. 59, 1903 (1987).
    [10]T. E. Keller and M. H. Rubin,“Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,”Phys. Rev. A 56, 1534 (1997).
    [11]S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken,“Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion,”Phys. Rev. A 69, (2004).
    [12]Z. Y. Ou and Y. J. Lu,“Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons,”Phys. Rev. Lett. 83, 2556 (1999).
    [13]M. Oberparleiter, and H. Weinfurter,“Cavity-enhanced generation of polarization-entangled photon pairs,”Opt. Commun. 183, 133 (2000).
    [14]C. E. Kuklewicz, F. N. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,”Phys. Rev. Lett. 97, 223601 (2006).
    [15]R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston,“Correlated photon pairs generated from a warm atomic ensemble,”Phys. Rev. A 82, 053842 (2010).
    [16]R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston,“Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble,”Opt. Express 19, 14632 (2011).
    [17]D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, G. C. and Guo,“Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,”Opt. Express 20, 11433 (2012).
    [18]B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer,“Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,”Phys. Rev. Lett. 111, 123602 (2013).
    [19]V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris,“Generation of Paired Photons with Controllable Waveforms,”Phys. Rev. Lett. 94, 183601 (2005).
    [20]P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris,“Generation of Narrow-Bandwidth Paired Photons: Use of a Single Driving Laser,”Phys. Rev. Lett. 97, 113602 (2006).
    [21]H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du,“Generation of Narrow-Band Hyperentangled Nondegenerate Paired Photons,”Phys. Rev. Lett. 106, 033601 (2011).
    [22]S. Zhang, J. F. Chen, C. Liu, M. M. T. Loy, G. K. L. Wong, and S. Du,“Optical Precursor of a Single Photon,”Phys. Rev. Lett. 106, 243602 (2011).
    [23]J. Mckeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble,“Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,”Science 303, 1992 (2004).
    [24]T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe,“Single-atom single-photon quantum interface,”Science 317, 488 (2007).
    [25]V. Leong, M. A. Seidler, M. Steiner, A. Cere, and C. Kurtsiefer,“Time-resolved scattering of a single photon by a single atom,”Nat. Commun. 7, 13716 (2016).
    [26]Waung, I-Chia, "Biphoton generation using spontaneous four-wave mixing in cold atoms" (2022)
    [27]Jia-Juan, Lee, "Full quantum theory of double-Λ four-wave mixing based on electromagnetically induced transparency" (2019)
    [28]Wang, Tsai-Ni, "Quasi-phase-matching slow light propagation in efficient four-wave mixing media" (2020)
    [29]Su, Po-Ching, "Atomic Raman Memory for Generation of Correlated Photon Pairs" (2010)
    [30]Cheng, Yu-Wei, "Setup and Optimization of Rubidium Magneto-optical Trap" (2009)
    [31]Zhong, Han-Sen, et al. "Quantum computational advantage using photons." Science 370, 1460-1463 (2020).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE