簡易檢索 / 詳目顯示

研究生: 張晞硯
Chang, Hsi-Yen
論文名稱: 延伸閘極式金屬氧化物酸鹼度感測器之製備與特性研究
Preparation and Characterization of pH Sensors Based on Extended-gate Metal Oxides
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 119
中文關鍵詞: 延伸式閘極場效電晶體二氧化鈦氧化鎳pH感測
外文關鍵詞: EGFET, TiO2, NiO, pH sensor
相關次數: 點閱:59下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別以TiO2及NiO感測膜製作延伸式閘極場效電晶體式pH感測器,旨在探討各感測膜之製程條件對薄膜性質之影響,並探討所得元件在pH2-12之pH感測特性。
    首先,以熱氧化法來製備TiO2/Ti感測元件,文中針對酸洗處理及煅燒溫度來探討。實驗結果顯示,元件經酸洗處理後,TiO2表面產生較多裂痕且所得晶粒較小,有利於氫離子吸附。煅燒溫度為500℃時所得元件(AT50f)為pH感測性能最佳,另外,在pH2-12間量測,感測靈敏度為56.20mV/pH,線性度為0.99737。此元件之遲滯壓差為12.1mV;在酸性(pH 2)環境下之時漂值最小約為0.479mV/hr;另外,鈉、鉀離子對元件感測之干擾可忽略。
    其次,以沉澱法製備NiO奈米粒子,經旋轉塗佈置得NiO/FTO感測元件,文中改變基材、煅燒溫度、塗佈次數、前驅鹽濃度、沉澱劑種類及濃度來加以探討。結果顯示,FTO之熱穩定性較ITO佳,因此,以FTO作為基材。沉澱劑分別採用NaOH及NH4OH溶液來進行,結果發現NaOH系統所得NiO薄膜之粒徑較小,且粒子堆疊較為緊密,故所得元件之感測性能較優異;在煅燒溫度為400℃時所得NiO薄膜對pH之感測靈敏度最高。
    以NaOH溶液為沉澱劑時,當塗佈次數增加時,膜厚亦增加,但因膜電阻隨之增加,反而不利電訊傳輸。另外,前驅鹽及沉澱劑濃度改變時,元件之靈敏度並未呈明顯變化。當鎳前驅鹽濃度1M、NaOH濃度2.5M、塗佈次數為10次時,所得元件40-10HF25之感測特性最佳,其感測靈敏度為53.40mV/pH,線性度為0.99887,遲滯壓差為6.3mV,時漂值在酸性(pH 2)緩衝液中最小,約為0.068mV/hr;另外,鈉、鉀離子對元件感測之干擾並不明顯。
    綜上所述,本研究利用兩種材料所得之最佳感測元件,皆具有良好之pH感測效果,且製程成本低、可微型化,在pH量測方面展現出應用上之發展潛力。

    In this work, TiO2/Ti and NiO/FTO pH sensors based on extended-gate field-effect transistors (EGFETs) were fabricated. The influence of process variables on properties of sensing films was investigated. Moreover, the sensing characteristics of devices toward pH were also studied in the pH range from 2 to 12.
    At first, TiO2/Ti films were formed by the thermal oxidation method. The effects of acid-washing and calcination temperature on the pH sensing characteristics of devices were under investigation. The experimental results showed that devices with acid-washing treatment exhibited higher pH sensitivity than those without acid-washing, due to the favorable adsorption of hydrogen ions arising from the formations of more cracks and smaller grains on the TiO2 surface. Besides, the device (denoted as AT50f) obtained at calcination temperature of 500oC demonstrated the best sensing characteristics with a sensitivity of 56.20 mV/pH and a linearity of 0.9974. The drift voltage of hysteresis was estimated as 12.1mV, and the drift rate in pH 2 buffer was about 0.479 mV/hr. Furthermore, the sensing interferences of sodium and potassium ions could be negligible.
    Subsequently, the precipitation technique was employed to prepare NiO nanoparticles following by spin-coating to fabricate NiO/FTO device. The influences of preparation variables including substrate material, calcination temperature, number of coating, concentration of precursor, and nature and concentration of precipitant on the pH sensing characteristics were studied. From experimental results, the FTO was chosen as the substrate material due to its good thermal stability. Two precipitants, NaOH and NH4OH solutions, were used for the synthesis of NiO powders, respectively. It was found that the NiO/FTO device derived from NaOH precipitant exhibited superior sensing performances, owing to the smaller grain size and dense packing of film. Moreover, the maximum sensitivity of device obtained at calcination temperature of 400oC.
    As increasing the number of coating, the thickness of NiO film was increased, resulting in the increase of surface area; however, it caused the decline of the electronic signal because of the increase of film resistance. Besides, the pH sensitivity of the device showed no obvious change with varying the concentrations of precursor and precipitant. Among all studied devices, the device 40-10HF25 demonstrated the best sensing characteristics toward pH, which was fabricated under the following conditions: 1M Ni(NO3)2 precursor with 2.5M NaOH solution and the coating number of 10. This device exhibited a sensitivity of 53.40 mV/pH with a linearity of 0.99887, a hysteresis voltage of 6.3mV, and a drift rate of 0.068 mV/h in acidic buffer (pH2). Besides, the interferences of sodium and potassium ions to the sensing characteristics were insignificant.
    In summary, the proposed devices exhibited fairly good sensing performances toward hydrogen ions. With advantages of low production cost and easy miniaturization, they showed great promising potential in the developments of pH sensing.

    中文摘要……………………………………………………………………I 英文摘要………………………………………………………………III 誌謝……………………………………………………………………………V 總目錄……………………………………………………………………VI 表目錄………………………………………………………………………X 圖目錄……………………………………………………………………XI 符號說明…………………………………………………………………XV 第一章 緒論 1 1.1 前言 1 1.2 場效電晶體型pH感測器之簡介 1 1.3 二氧化鈦感測膜 4 1.3.1 結構與性質 4 1.3.2 薄膜製備 5 1.4 氧化鎳感測膜 6 1.4.1 結構與性質 6 1.4.2 薄膜製備 6 1.5 研究動機 7 第二章 原理 16 2.1 場效電晶體基礎理論 16 2.2 離子感測場效電晶體操作原理 17 2.3 延伸式閘極離子感測場效電晶體操作原理 19 2.4表面吸附座鍵結模型 20 第三章 實驗 24 3.1 藥品及材料 24 3.2 儀器及分析設備 25 3.2.1 設備及裝置 25 3.2.2 分析儀器 25 3.3 實驗方法與步驟 27 3.3.1 元件製備 27 3.3.1.1 感測薄膜製備 27 3.3.1.2 延伸式閘極之封裝 29 3.3.2 pH感測 29 3.3.2.1 參數設定 29 3.3.2.2 pH量測步驟 30 3.3.2.3 感測靈敏度之定義 31 3.3.3分析條件 31 第四章 二氧化鈦pH感測元件之製備與特性探討 36 4.1 熱氧化製程變因探討 36 4.1.1 煅燒溫度之影響 36 4.1.2 酸洗處理之影響 38 4.2 感測元件電性特性之探討 39 4.2.1 pH感測特性之探討 39 4.2.2 遲滯現象之探討 40 4.2.3 時漂效應之探討 41 4.2.4 元件等電點之探討 41 4.2.5 共存陽離子之干擾 42 4.2.6 操作溫度之影響 42 4.3 感測元件之綜合討論 42 第五章 氧化鎳pH感測元件之製備與特性探討 60 5.1 基材之選擇 60 5.2 氧化鎳粒子之製備 61 5.2.1 沉澱反應 61 5.2.2 粒徑大小及表面形態 62 5.3 煅燒溫度之探討 63 5.3.1 熱重分析結果 63 5.3.2 XRD分析結果 64 5.3.3 SEM分析結果 65 5.3.4 FTIR分析結果 65 5.3.5 XPS分析結果 66 5.3.5 BET分析結果 67 5.4 旋轉塗佈次數之影響 69 5.5 沉澱劑濃度變因之影響 70 5.6 感測元件pH感測特性之探討 70 5.6.1 pH感測靈敏度之探討 70 5.6.2 遲滯現象之探討 71 5.6.3 時漂效應之探討 72 5.6.4 最佳感測元件等電點之探討 72 5.6.5 共存陽離子干擾探討 73 5.6.6 操作溫度之影響 73 5.7 感測元件之綜合討論 73 第六章 結論與建議 109 6.1 結論 109 6.2 建議 111 第七章 參考文獻 112

    1. Y. Miao, J. Chen, and K. Fang, “New technology for the detection of pH”, J. Biochem. Biophys. Methods, 63, 1, 1-9, 2005.
    2. B. D. Liu, Y. K. Su, and S. C. Chen, “Ion sensitive field effect transistor withsilicon nitride gate for pH sensing,” INT. J. Electronics, 67, 1, 59-63,1989.
    3. P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed.Eng., 17, 1, 70-71, 1970.
    4. B. D. Liu, Y. K. Su, and S. C. Chen, “Ion sensitive field effect transistor withsilicon nitride gate for pH sensing,” INT. J. Electronics, 67, 1, 59-63,1989.
    5. K. Chen, G. Li, H. Lu, and L. Chen, “Effect of total hydrogen content in silicon nitride sensitive film on performance of ISFET,” Sens. Actuator B, 12, 1, 23-27, 1993.
    6. H. Abe, M. Esashi, and T. Matsuo, “ISFETs using inorganic gate thin-films, ”IEEE Trans. Electron Dev., 26, 12, 1939-1944, 1979.
    7. M. J. Schöning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordoŝ, and H. Lüth, “A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique,” Sens. Actuator B, 35 , 1, 228-233, 1996.
    8. J. C. Chou and J. L Chiang, “Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing,” Sens. Actuator B, 62 ,2, 81-87, 2000.
    9. J. L. Chiang, S. S. Jan, J. C. Chou, and Y. C. Chen, “Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide,” Sens. Actuator B, 76, 1, 624-628, 2001.
    10. S. Poghossian, “The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs,” Sens. Actuators B, 7, 1-3, 367-370, 1992.
    11. H. Hara and T. Ohta, “Dynamic response of a Ta2O5 -gate pH-sensitive field-effect transistor,” Sens. Actuator B, 32, 115-119, 1996.
    12. L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys., 63, 1, 19-23, 2000.
    13. H. K. Liao, “Study of tin oxide as a sensing film for ISFET applications,” Dissertation of Ph.D., Chung Yuan Christian University, 1998.
    14. J. Van der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. Actuator B, 4, 291-298, 1983.
    15. S. Caras, and J. Janata, “Field effect transistor sensitive to penicillin”, Anal. Chem., 52, 1935-1937, 1980.
    16. E. M. Guerra, G. R. Silva, and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol-gel method ”, Solid State Sciences, 11, 456-460, 2009.
    17. W. L. Wang, H. Lin, and J. B. Li, ”Formation of titania nanoarrays by hydrothermal reaction and their application in photovoltaic cells” J. Am. Ceram. Soc., 91, 2, 628- 631, 2008.
    18. J. Luo, O. B. Lia, and M. Chen, ”Development of titania nanotubes loaded with Au nanoparticles and their opto-electronic response under UV light.” Int. J. Inorg. Mater. ,25, 5, 557-560, 2010.
    19. M. D. Wiggins, M. C. Neison, and C. R. Aita, “Phase Development in Sputter Deposited Titanium Dioxide”, J. Vac. Sci. Technol, A, 14, 3, 772-776, 1996.
    20. R. Zhao, M. Xu, J. Wang, and G. Chen,” A pH sensor based on the TiO2 nanotube array modified Ti electrode”, Electrochimica Acta, 55, 5647-5651, 2010.
    21. 陳璟鋒, ”P型氧化鎳薄膜之製備與其光性、電性、材料特性之研究”,國立成功大學材料科學及工程學系碩士論文,2004.
    22. B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, P. P. Rao, and V. K. Vaidyan, “Preparation of transparent and semiconducting NiO film”, Acta Chim. Slov., 68, 149-154, 2003.
    23. I. G. Austin, and N. F. Mott, “Polarons in crystalline and non-crystalline materials,” 2001, Adv. Phy., 50, 757-812, 2001.
    24. C. Lin, S. Al-Muhtaseb, and J. A. Ritter,” Thermal treatment of sol-gel derived nickel oxide xerogels”, J. Sol-Gel Sci. Technol., 28, 133,2003.
    25. P. K. Sharma, M. C. A. Fantini, and A. Gorenstein,” Synthesis, characterization and electrochromic properties of NiOxHy thin film prepared by a sol–gel method” Solid State Ionics , 113-115, 457- 463,1998.
    26. E. Ozkan Zayim, I. Turhan, F. Z. Tepehan, and N. Ozer” Sol–gel deposited nickel oxide films for electrochromic applications” Sol. Energy Mater. Sol. Cells, 92, 164–169, 2008.
    27. F. B. Zhang, Y. K. Zhou, and H. L. Li, “Nanocrystalline NiO as an electrode material for electrochemical capacitor” Mater. Chem. And Phys., 83, 260-264, 2004.
    28. D. L. Tao, and F. Wei, “New procedure towards size-homogeneous and well-dispersed nickel oxide nanoparticles of 30 nm” Mater. Lett. , 58, 3226-3228, 2004.
    29. M. Akinc, N. Jongen, J. Lemaitre, and H. Hofmann,” Synthesis of nickel hydroxide powders by urea decomposition” J. European Cera. Soc. 18, 1559-1564, 1998.
    30. Yang, C. C. “Synthesis and characterization of active materials of Ni(OH)2 powders” Int. J. Hydrogen Energy, 27, 1071-1081, 2002.
    31. 許凱翔, “金屬-氧化物式化學感測器之研製”, 成功大學微電子工程研究所碩士論文,16-41, 2011.
    32. U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Rep., 48, 53-229, 2003.
    33. Y. H. Liao, and J. C. Chou” Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol–gel method” Mater. Chem. Phys., 114, 2–3, 542–548, 2009.
    34. R. Zhao, M. Z. Xu, J. Wang, and G. Chen,” A pH sensor based on the TiO2 nanotube array modified Ti electrode” Electrochim. Acta , 55, 20, 5647–5651, 2010.
    35. T. M. Pan, and J. C. Lin” A TiO2/Er2O3 stacked electrolyte/insulator /semiconductor film pH-sensor for the detection of urea” Sens. Actuators, B,138, 474–479, 2009.
    36. J. C. Chou, and C. W. Chen” Fabrication and application of ruthenium- doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs” IEEE Sens. J. , 9, 3,277-284, 2009.
    37. J. C. Chou, and H. H. Yang, ”Study the characteristics of titanium oxide hydrogen ion sensor using XRD and AES” Rare Metal Material Sand Engineering, 35, 3,250-251, 2006.
    38. S. H. Hsiao, J. L. Lin, Y. L. Chin, and T. P. Sun,” Detection and combination of acid-base solution and UV light using a TiO2 Sensor” Sensors Lett. , 6, 6, 1010-1013, 2008.
    39. H. C. Lee, L. F. Zhang , C. H. Lu, J. L. Lin, Y. L. Chin, and T. P. Sun “Development of anodic titanium oxide nanotubes applied to a pH sensor with amperometric and potentioimetric methods”, Adv. Mater. Res., 528, 10-13, 2012.
    40. 張順雄, 張忠誠, 李榮乾 譯,”電子元件與電路理論 上冊, 東華書局, 291-342, 1997.
    41. C. D. Fung, P. W. Cheung, and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor filed-effect transistor”, IEEE Trans. Electron Dev., 33, 1, 8-18, 1986.
    42. P. Bergveld, “ISFET, Theory and Practice”, IEEE Sensor Conference Toronto, 2003.
    43. 馮文昕, ”磁場對二氧化鈦粒子之zeta電位的影響”, 國立台灣大學碩士論文, 1999.
    44. D. E. Yate, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Soc. Faraday Trans. I, 70, 1807-1818, 1974.
    45. J. R. Siqueira Jr., E. G. R. Fernandes, O. N. de Oliveira Jr., and V. Zucolotto , Biosensors based on field-effect devices, nanobioelectro- chemistry, Springer-Verlag Berlin Heidelberg, 76, 2013.
    46. C. Y. Chen, T. P. Sun, and H. L. Hsieh,” CMOS, Delta-sigma pH-to-digital converter as new integrated device for potentiometric biosensors applications”, New Perspectives in Biosensors Technology and Applications, 311-326, 2011.
    47. C. L. Wu, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on SnO2/Al/SiO2/Si ISFET metal light shield”, Mater. Chem. Phys., 63, 153-156, 2000.
    48. E. Gileadi, E. Kirowa-Eisner, and J. Penciner, “Interfacial electrochemistry, an experimental approach”, Addison-Wesley Publish Company, INC., 4-6, 1975.
    49. J. S. Noh, and J. A. Schwarz, “Estimation of the Point of Zero Charge of Simple Oxides by Mass Titration”, J. Colloid Interf. Sci., 130, 157- 164, 1989.
    50. L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFET”, Mater. Chem. Phys., 70, 12-16, 2001.
    51. L. Bousse, and P. Bergveld, “The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs”, Sens. Actuators, 6, 65-78, 1984.
    52. Y. H. Liao, and J. C. Chou “Fabrication and characterization of a ruthenium nitride membrane for electrochemical pH sensors” Sensors, 9, 2478- 2490, 2009.
    53. R. Greenwood, and L. Bergstroem, “Electroacoustic and rheological properties of aqueous Ce-ZrO2 (Ce-TZP) suspensions” J. European Ceram. Soc., 17, 537-548, 1997.
    54. X. Y. Deng, and Z. Chen,” Preparation of nano-NiO by ammonia precipitation and reaction in solution and competitive balance” Mater. Lett, 58, 276-280, 2004.
    55. G. L. Miessler, and D. A. Tarr,” Inorganic Chemistry, 3rd edition” Pearson Prentice Hall, 367-368, 2004.
    56. H. Qiao, Z.Q. Wei, H. Yang, L. Zhu, and X. Y. Yan” Preparation and characterization of NiO nanoparticles by anodic arc plasma method” J. Nanomater., 2009, 1-5, 2009.
    57. 陳崧哲, 鍾順和, 蕭秀芬, ”Cu/WO3-NiO上光觸表面催化二氧化碳與水和成甲醇反應的規律” 催化學報, 24, 1, 67-72, 2003.
    58. L. H. Little, “Infrared Spectra of Adsorbed Species”, Academic Press, 1966.
    59. J. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, and J. Chastain ed., “Handbook of X-ray Photoelectron Spectroscopy, 2nd edition)”, Physical electronics, Perkin Elmer Corporation, 1992.
    60. G. Ertl, H. Knözinger, F. Schüth, and J. E. Weitkamp, “Handbook of Heterogeneous Catalysis, 2nd edition”, WILRY-VCH Verlag GmbH&Co. KGaA, Weinheim, 2008.
    61. G. Wulfsberg, “Principles of descriptive inorganic chemistry”, University Science Books, 1991.
    62. M. L. Naklicki, S. R. Rao, M. Gomez, and J. A. Finch,” Flotation and surface analysis of the nickel (II) oxide/amyl xanthate system”, Int. J. Miner. Process, 65, 73-82, 2002.
    63. J. C. Chou, and Y. F. Wang “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol–gel method” Sens. Actuators, B, 86, 58-62, 2002.
    64. J. C. Chou, and Y. F. Wang, “Temperature characteristics of a-Si:H gate ISFET”, Mater. Chem. Phys, 70, 107-111, 2001.
    65. Y. H. Liao, and J. C. Chou, “Study on the nonideal characteristics of the extended gate field effect transistor based on the ruthenium nitride sensing membrane”, Proceedings of the 3rd Asia-Pacific Conference of the Transducers and Micro-Nano Technology, Singapore, 4 pages, 2006.
    66. Y. L. Chin, J. C. Chou, Z. C. Lei, T. P. Sun, W. Y. Chung, and S. K. Hsiung, “Titanium nitride membrane application to extended gate field effecttransistor pH sensor using VLSI technology”, Jpn. J. Appl. Phys., 40, 6135-6311, 2001.
    67. T. Matsuo, and M. Esashi, “Method of ISFET fabrication”, Sens. Actuators, 1, 1, 77-96, 1981.
    68. J. C. Chou, and C. N. Hsiao, “Drift behavior of ISFETs with a-Si:H-SiO2 gate insulator”, Mater. Chem. Phys., 63, 270-273, 2000

    下載圖示 校內:2015-09-04公開
    校外:2015-09-04公開
    QR CODE