| 研究生: |
林宏柏 Lin, Hung-Po |
|---|---|
| 論文名稱: |
生質燃料與尿素共燒特性之研究 Study on the Co-Combustion Characteristics of Biomass Fuel with Urea |
| 指導教授: |
伍芳嫺
Wu, Fang-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 214 |
| 中文關鍵詞: | 木顆粒 、塑膠 、尿素 、共燒 、單顆燃料碇燃燒 、鼓泡式流體化床 、減碳效率 、氮轉化效率 |
| 外文關鍵詞: | Nitrogen-based fuel, Urea blending, Carbon reduction efficiency, Bubbling fluidized-bed combustion, NOx reduction |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我國除能源發電造成許多二氧化碳排放外,國內廢棄物亦逐年攀升,目前廢棄物處理方法為焚化或製成SRF作為生質能源,然而塑膠混合廢棄物位居目前廢棄物種類前列,由於塑膠為石化產品,大量焚化含塑膠之廢棄物預期將增加二氧化碳排放量。本研究將木顆粒混摻塑膠作為模擬農業廢棄物生質燃料(WPE),再與尿素(Urea)混摻製成氮基燃料,利用鼓泡式流體化床建立空氣分級共燒技術,提供氮基燃料燃燒之減碳效率與燃料燃燒過程氮轉化情形探討,此方式預期可減少燃燒塑膠混合廢棄物之二氧化碳排放量,更可藉尿素作為還原性脫硝添加劑之特性,提供低二氧化碳與低氮氧化物排放量且更安全之燃燒技術。熱重分析結果發現,尿素受熱過程為吸熱反應,分為氰尿酸生成與分解兩階段,WPE則分為脫揮發與焦碳氧化兩階段。氮基燃料受熱反應則分為第一次脫揮發、第二次脫揮發兼氣相燃燒,與焦碳燃燒三階段。尿素混摻比增加將更促進脫揮發反應並產生較多含氮化合物,但焦碳氧化反應會因此受部份抑制。
封閉式單顆燃料碇燃燒實驗結果顯示,當氮基燃料碇中尿素混摻比增加,CO生成與尿素分解產物會使燃料碇氣相燃燒延遲,但尿素分解過程所釋出NH3,可與氣相燃燒煙道氣產生SNCR反應,降低氣相燃燒階段NOx濃度。若將生質物與尿素分開置入可有效使CO濃度有所降低。但也因此於氣相燃燒階段無SNCR現象,無法有效降低NOx濃度。於開放式單顆燃料碇燃燒實驗顯示,當氮基燃料中尿素混摻比增加,燃燒時燃料碇內部溫度與火焰長度均降低,焦碳燃燒時塑膠釋出碳氫揮發份會與尿素分解釋出NH3參與反應,焦碳燃燒時維持高溫時間增長。
鼓泡式流體化床燃燒實驗結果發現,氮基燃料可持續穩態燃燒,且氮基燃料二氧化碳排放量相比生質物較低,減碳效率最高可達48%。但生成較多CO,但可藉由通入二次空氣來有效降低CO排放,故CO2濃度會略微回升,但相比WPE仍有減碳效果,最高可達41%。氮基燃料於穩態燃燒時,床層溫度達還原脫硝之高效操作溫度,燃料氮轉化效率降低,可降低NOx排放。然而BR增加至一定程度,會導致床層溫度偏離還原脫硝之高效操作溫度,使還原脫硝效果減弱,同時燃料氮含量增加將使fuel NOx排放增加,然而氮轉化效率結果顯示,所有氮基燃料氮轉化效率均比生質物低,因此NOx排放僅呈現緩慢回升趨勢。
Plastic-containing waste incineration poses challenges for controlling CO₂ and air pollutant emissions. This study developed a nitrogen-based fuel by blending urea with wood–plastic biomass (WPE) and investigated its air-staged co-combustion behavior in a bubbling fluidized-bed combustor. Thermogravimetric analysis showed that urea decomposes endothermically via cyanuric acid formation, while nitrogen-based fuels exhibit first volatilization, second volatilization while gas-phase combustion, and char combustion. Increasing urea blending enhances volatilization but partially inhibits char oxidation. Single-pellet combustion experiments revealed delayed volatile combustion and in situ NOx reduction via NH₃ released from urea decomposition. Fluidized-bed results demonstrated stable combustion with significantly lower CO₂ emissions than WPE, achieving a maximum carbon reduction efficiency of 48%. Although CO emissions increased, secondary air injection effectively reduced CO while maintaining net carbon reduction. Optimal bed temperatures promoted reductive denitration, resulting in lower fuel-nitrogen conversion and reduced NOx emissions. Overall, urea-assisted co-combustion provides a promising low-CO₂ and low-NOx strategy for plastic-containing waste fuels.
[1] IEA授權:CC BY 4.0, Global Energy Review 2025, 2025
[2]環境部氣候變遷署, 2024年中華民國國家溫室氣體排放清冊報告, 民國114年
[3]農業部, 農業發展條例, 民國105年11月30日修改
[4]行政院農業委員會, 農業廢棄物清理及再利用現況專題報告, 民國109年12月7日
[5]環境部, 事業廢棄物貯存清除處理方法及設施標準, 民國112年11月1日修改
[6]農業部, 綠色國民所得帳農業固體廢棄物歷年表, 民國90年至民國113年
[7]蔡文田, 農業廢棄物的循環再利用, 2020年
[8]楊紹榮, 農業廢棄物處理之探討, 台南區農業專訊創刊號9-12頁, 1992年10月
[9]朱海鵬, 農業廢棄物共同清除處理機構管理輔導辦法簡介, 民國90年7月
[10]環境部資源循環署, 113年事業廢棄物申報量統計報告, 民國114年6月
[11]張瓊芬, 張家驥, 固體再生燃料現況與展望, 中華民國環境工程學會, 2023年
[12]環境部, 空氣污染物排放量清冊, 民國112年9月
[13]張君正, 張木彬, 氮氧化物生成機制與控制技術之探討, 工業污染防治 第50期(4.1994)
[14]Prabir Basu, “Biomass Gasification, Pyrolysis and Torrefaction Practical Design and Theory Second Edition”, 2013
[15]經濟部能源署, 2024能源統計手冊, 民國113年
[16]張家驥, 台灣生質能發展與挑戰, 民國109年12月
[17]環境部, 固體再生燃料製造技術指引與品質規範, 民國109年
[18]環境部, SRF體檢報告書, 民國113年
[19]Jianyun Xiong, Shumei Zhang, Linyao Ke, Qiuhao Wu, Qi Zhang, Xian Cui, Anqi Dai, Chuangxin Xu, Kirk Cobb, Yuhuan Liu, Roger Ruan, Yunpu Wang, “Research progress on pyrolysis of nitrogen-containing biomass for fuels, materials, and chemicals production”, Science of the Total Environment 872 (2023) 162214
[20]Oren Elishav, Gennady E. Shter, Gideon S. Grader, “Auto ignition of a nitrogen-based monofuel as a function of pressure and concentration”, Fuel 181 (2016) 765–771
[21]Alon Grinberg Dana, Gennady E. Shter, Gideon S. Grader. “Nitrogen-based alternative fuel: an environmentally friendly combustion approach”, RSC Advances, 2014, 4, 10051
[22]Oren Elishav, Daniel R. Lewin, Gennady E. Shter, Gideon S. Grader. “The nitrogen economy: Economic feasibility analysis of nitrogen-based fuels as energy carriers” , Applied Energy 185, 183–188, 2017
[23]Alon Grinberg Dana, Gennady E. Shter, Gideon S. Grader. “Nitrogen-Based Alternative Fuel: Safety Considerations” , Energy Technology 10.1002/ente.201500180
[24]Alon Grinberg Dana, Oren Elishav, Andr Bardow, Gennady E. Shter, Gideon S. Grader. “Nitrogen-Based Fuels: A Power-to-Fuel-to-Power Analysis”, Angewandte 8798-8805, July 25, 2016
[25]Oren Elishav, Bar Mosevitzky Lis, Elisa M. Miller, Douglas J. Arent, Agustin Valera-Medina, Alon Grinberg Dana, Gennady E. Shter, Gideon S. Grader. “Progress and Prospective of Nitrogen-Based Alternative Fuels” Chemical Review. 120, 5352−5436, 2020
[26]Alon Grinberg Dana, Gennady E. Shter, Gideon S. Grader. “Nitrogen-Based Alternative Fuels: Progress and Future Prospects” Energy Technology 10.1002/ente.20150232
[27]Yucheng Kuang, Dawei Han, Zheqi Xu, Yafei Wang, Chaojun Wang. “Numerical study on combustion characteristics of ammonia mixture under different combustion modes” International Journal of Hydrogen Energy 54, 1403-1409, 2024
[28]Suyang Pan, Jiliang M, Xiaoping Chen, Cai Liang. “Combustion of an ammonia bubble with an oxygen bubble in a fluidized bed” Applied Thermal Engineering 244, 122591, 2024
[29]Hideaki Kobayashi, Akihiro Hayakawa, K.D.KunkumaA. Somarathne, Ekenechukwu C. Okafor. “Science and technology of ammonia combustion” Proceedings of the Combustion Institute 37, 109–133, 2019
[30]Jie Tian, Lu Wang, Yong Xiong, Yongqi Wang, Wei Yin, Guohong Tian, Zhaoyu Wang, Yong Cheng, Shaobo Ji.“Enhancing combustion efficiency and reducing nitrogen oxide emissions from ammonia combustion: A comprehensive review ”Process Safety and Environmental Protection 183, 514-543, 2024
[31]Husain, D. Norrish, R. G. W. “The Explosive Oxidation of Ammonia and Hydrazine Studied by Kinetic Spectroscopy.” Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 145– 164, 1963,
[32]Takeyama, T. Miyama, H.“Reaction Mechanism of Ammonia Oxidation in Shock Waves”J. Chem. Phys. 3737-3738, 1965
[33]Bradley, J. N.; Butlin, R. N.; Lewis, D. “Oxidation of Ammonia in Shock Waves.”Trans. Faraday Soc. 71-78, 1968
[34]Fujii, N.; Miyama, H.; Koshi, M. Asaba, T. “Kinetics of Ammonia Oxidation in Shock Waves.”Symp. Combust., [Proc.] 873-883, 1981
[35]Miller, J. A.; Smooke, M. D.; Green, R. M.; Kee, R. J. “Kinetic Modeling of the Oxidation of Ammonia in Flames.”Combust. Sci. Technol. 149-176, 1983
[36]Alon Grinberg Dana, Gal Tvil, Lea Winter, Gennady E. Shter, Gideon S. Grader. “Pressure effect on the combustion of aqueous urea ammonium nitrate alternative fuel”, Fuel, 159, 500-507, 2015
[37]Bar Mosevitzky, Alon Grinberg Dana, Gennady E. Shter, Gideon S. Grader. “Combustion simulations of aqueous urea ammonium nitrate monofuel at high pressures” Combustion and Flame, 166, 295-306, 2016
[38]Prabir Basu, “Combustion and Gasification in Fluidized Beds”, 2006
[39]Bo Leckner. “From bubbling to circulating fluidized bed combustion—development and comparison”, Heliyon Volume 10 Issue 13, 15 July 2024
[40]Witold Zukowski, Dawid Jankowski, Jerzy Baron, Jan Wrona, “Combustion dynamics of polymer wastes in a bubbling fluidized bed”, Journal of Cleaner Production 320 128807, 2021
[41]Witold Zukowski, Dawid Jankowski, Jan Wrona, Gabriela Berkowicz-Płatek, “Combustion behavior and pollutant emission characteristics of polymers and biomass in a bubbling fluidized bed reactor”, Energy 263 125953, 2023
[42]F.P. Qian, C.S. Chyang, K.S. Huang, Jim Tso, “Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor”, Bioresource Technology 102 1892-1898, 2011
[43]Feng Duan, Chien-Song Chyang, Li-hui Zhang, Yi-Ting Chi, “Effect of the molecular structure of nitrogen compounds on the pollutant formation in a bubbling fluidized-bed combustor”, Energy 83 394-402, 2015
[44]Heidi Saastamoinen, Timo Leino, “Fuel Staging and Air Staging To Reduce Nitrogen Emission in the CFB Combustion of Bark and Coal”, Energy Fuels, 33, 6, 5732-5739, 2019
[45]A. N. HAYHURST, A. D. LAWRENCE, “The amounts of NOx and N2O formed in a fluidized bed combustor during the burning of coal volatiles and also of char”, Combustion and FlameVolume 105, Issue 3, p341-357, May 1996
[46]Sang Hee Yoon, Seong-Ju Kim, Geon-Uk Baek, Ji Hong Moon, Sung Ho Jo, Sung Jin Park, Jae-Young Kim, Sang-Jun Yoon, Ho Won Ra, Sung-Min Yoon, Jae Goo Lee, Joo-Sik Kim, Tae-Young Mun, “Operational optimization of air staging and flue gas recirculation for NOx reduction in biomass circulating fluidized bed combustion”, Journal of Cleaner Production 387 135878, 2023
[47]Hao Liu, Joel Chaney, Jinxing Li, Chenggong Sun, “Control of NOx emissions of a domestic/small-scale biomass pellet boiler by air staging”, Fuel 103 p792–798, 2013
[48]Zhong Li1, Xuemin Liu, Dinghua Yang, Wenjun Qin, Gensheng Yang, Dalong zhang, “Research of the SNCR process and its application”, Advanced Materials Research, Vols. 953-954, p1307-1314, 2014-06-18
[49]Kristian Krum, Rituja Patil, Henrik Christensen, Hamid Hashemi, Ze Wange, Songgeng Li, Peter Glarborg, Hao Wua “Kinetic modeling of urea decomposition and byproduct formation” Chemical Engineering Science 230, 116138, 2021
[50]YanLin,YanfenLiao,ZhaoshengYuShiwenFang,YoushengLin,YunlongFan, XiaoweiPeng,XiaoqianMa. “Co pyrolysis kinet ics of sewage sludge and oil shale thermal decomposition using TGA-FTIR analysis.” Energy Conversion and Management,15,345 352,2016
[51]Chao Fan, Junwei Yan, Yiru Huang, Xiangxin Han, Xiumin Jiang, “XRD and TG-FTIR study of the effect of mineral matrix on the pyrolysis and combustion of organic matter in shale char”,Fuel ,139,502–510,2015
[52]Nobuyoshi Koga, Sergey Vyazovkin, Alan K. Burnham, Loic Favergeon, Nikita V. Muravyev, Luis A. P´erez-Maqueda, Chiara Saggese, Pedro E. S´anchez-Jim´enez, “ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics”, Thermochimica Acta 719 179384, 2023
[53]Mengjie Liu, Bin Han, Jin Bai, Xuetao Wang, Lili Xing, Siyu Lv, Haojie Li, “Insights into the co-combustion characteristics and synergistic effects of biomass and polyethylene plastic under rapid heating conditions”, Energy 325 136113, 2025
[54]Sergey Vyazovkin, Alan K. Burnham, Jose M. Criado, Luis A. Perez-Maqueda, Crisan Popescu, Nicolas Sbirrazzuoli, “ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data”, Thermochimica Acta 520 p1-19, 2011
[55]Yao Lin, Yanfen Liao, Zhaosheng Yu, Shiwen Fang, Xiaoqian Ma, “The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis”, Thermochimica Acta,653, 71-78,2017
[56]Jau-Jang Lu, Wei-Hsin Chen, “Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis”, Applied Energy Volume 160, Pages 49-57, December 15, 2015
[57]Senem Sezer, Furkan Kartal, Ugur Ozveren, “The investigation of co-combustion process for synergistic effects using thermogravimetric and kinetic analysis with combustion index”, Thermal Science and Engineering Progress Volume 23, 1 June 2021
[58]Guan-Bang Chen, Fang-Hsien Wu, Sheng-Pin Lin, Yun-Ting Hsu, Ta-Hui Lin,“A study of sewage sludge Co-gasification with waste shiitake substrate”Energy 259 124991, 2022
[59]IPCC,“IPCC Guidelines for National Greenhouse Gas Inventories — Energy — for fuel-C → CO₂ formula and oxidation factor.”, 2006
[60]Jicheng Hui, Shujun Zhu, Jiangong Lin, Zhaoyang Li, Xiaoyang Cao, Qinggang Lyu, “Nitrogen conversion characteristics of pulverized coal preheating combustion in wide load ranges”Journal of the Energy Institute Volume 116, 101747, October 2024
[61]Mohamed Ismail, Devin Alexander “The basics of thermocouples” 2014
[62]Semion Shaul, Evgeny Rabinovich, Haim Kalman, “Generalized flow regime diagram of fluidized beds based on the height to bed diameter ratio”, Powder Technology, 228, p264-271, 2012
[63]苑輔元,流化床中木顆粒與廢塑膠純氧燃燒之研究, 2022
[64]Falah Alobaid, Naser Almohammed, Massoud Massoudi Farid, Jan May, Philip Ro¨ßger, Andreas Richter, Bernd Epple, “Progress in CFD Simulations of Fluidized Beds for Chemical and Energy Process Engineering”, Progress in Energy and Combustion Science 91 100930, 2022
[65]W.-c. Yang, Handbook of fluidization and fluid-particle systems, CRC press, 2003.
[66]Grace, J. R., “Fluidized-bed hydrodynamics.”, Handbook of Multiphase Systems, Chapter 8, Hemisphere/CRC.
[67]D. Geldart, Types of gas fluidization, Powder Technology, 7, p285-292, 1973
[68]J.C. Schmid, T. Pröll, C. Pfeifer, R. Rauch, H. Hofbauer,“Cold flow model investigation on a modified riser with enhanced gas-solid contact–locating the regions of operation in a fluidization regime map. ”, 2012
[69]Ana Ramosa, Eliseu Monteiro, Valter Silva, Abel Rouboa, “Co-gasification and recent developments on waste-to-energy conversion: A review”, Renewable and Sustainable Energy Reviews Volume 81, Part 1, Pages 380-398, January, 2018
[70]Zhihua Chen, Mian Hu, Xiaolei Zhu, Dabin Guo, Shiming Liu, Zhiquan Hu, Bo Xiao, Jingbo Wang, Mahmood Laghari, “Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis”, Bioresource Technology Volume 192, Pages 441-450, September 2015
[71]Mei Jiang, Dongmei Bi, Tianyu Wang, Zixiang Gao, Jing Liu, “Co-pyrolysis of cellulose and urea blend: Nitrogen conversion and effects of parameters on nitrogenous compounds distributions in bio-oil”, Journal of Analytical and Applied Pyrolysis Volume 157, 105177, August 2021
[72]Denghui Wanga, Shien Hui, Changchun Liu “Mass loss and evolved gas analysis in thermal decomposition of solid urea” Fuel 207, p268-273, 2017
[73]Andreas Lundström, Thomas Snelling, Per Morsing, Pär Gabrielsson, Enric Senar, Louise Olsson,“Urea decomposition and HNCO hydrolysis studied over titanium dioxide, Fe-Beta and -Alumina”, Applied Catalysis B: Environmental Volume 106, Issues 3–4, 11, Pages 273-279, August 2011
[74]Yu Zhaosheng, Ma Xiaoqian, Liu Ao, “Kinetic studies on catalytic combustion of rice and wheat straw under air-and oxygen-enriched atmospheres, by using thermogravimetric analysis”, Biomass and bioenergy, (11): p.1046-1055, 2008. 32
[75]Zigan Huang, Zhaosheng Yu, Meirong Li, Yanhui Bin, Xikui Zhang, Chen Wei, Yanfen Liao, Anqing Zheng, Xiaoqian Ma,“Catalytic co-pyrolysis of Chlorella vulgaris and urea: Thermal behaviors,product characteristics, and reaction pathways”, Journal of Analytical and Applied Pyrolysis 167 105667, 2022
[76]行政院環境部, 空氣污染防制法, 民國107年08月01日