簡易檢索 / 詳目顯示

研究生: 林敬庭
Lin, Jing-Ting
論文名稱: 離岸風電基礎安全培訓之嚴肅遊戲設計:高空作業模組
Serious game design of offshore wind power basic safety training:Working at heights module
指導教授: 謝孟達
Shieh, Meng-Dar
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 124
中文關鍵詞: 嚴肅遊戲高空作業教學系統設計品質機能展開線性迴歸
外文關鍵詞: Serious Games, Working at heights, Instructional System Design, Quality Function Deployment, Linear Regression
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技進步,人們接收資訊的方式越來越多樣化,針對不同的條件、風險等變數也有著越來越多不一樣的解決方案,也允許打破以往限制往更多元的領域研究。以專業培訓來說,舊有現場培訓方式在某些情況可能置新手於職業風險當中,或者在covid的疫情背景下不被允許而被迫停課。嚴肅遊戲因為其本身性質,隔絕了現場訓練可能的風險,以及支持線上培訓,使其成為職業培訓的新興方案。
    隨著全球能源趨勢,台灣政府也針對離岸風力發電提出新的政策,並著手產業本土化、提升公眾認知等事務,並鼓勵新興科技解決方案共同塑造產業藍Figure。而當中重要的一環即is風力發電人才培訓,本研究針對此需求,與海洋科技產業創新專區(MTIC)合作開發一套用於高空作業培訓(GWO BST-WAH)之嚴肅遊戲,並定時於專區每週開設的課程進行研究,主要目標族群為在風力發電領域且有高空作業需求的專業人員。透過實體課程研究以及研究方法、設計方法文獻探討作為研究之材料。研究過程分為三個階段包括:教學系統設計階段、遊戲設計階段以及測試與驗證階段。教學系統設計階段將與主題專家合作,運用認知任務分析以及品質機能展開歸納出符合教學內容的遊戲設計準則,並在遊戲設計階段實施設計。最終招募20位受測者進行遊戲測試以及問卷評估,並運用敘述統計以及線性迴歸作為統計工具。問卷題目的滿分為7分,總體平均分數位於中上(5.75),證明了系統可用性及學習性。迴歸分析則挑選出了r²值較大的數據(r²>0.2),歸納出對於嚴肅遊戲設計以及高空作業培訓的重點以及建議。

    With technological advancement, the ways people receive information are increasingly diversified, offering more varied solutions for different conditions and risks, and allowing exploration into more diverse research fields. In professional training, traditional on-site training methods may place novices at occupational risk in certain situations, or be prohibited and forced to suspend due to the Covid pandemic. Serious games, due to their inherent nature, isolate the potential risks of on-site training and support online training, making them an emerging solution for vocational training.
    In line with global energy trends, the Taiwan government has proposed new policies for offshore wind power generation, focusing on industry localization, enhancing public awareness, and encouraging innovative technological solutions to shape the industry blueprint. An essential component is the training of wind power personnel. This study, in response to this need, collaborated with the Marine Technology Industry Innovation Zone (MTIC) to develop a serious game for working at heights training (GWO BST-WAH). It is regularly used in the courses offered weekly in the zone, primarily targeting professionals in the wind power field with working at heights requirements. The study uses physical course research, research methodologies, and design methods literature as research materials. The research process is divided into three stages: instructional system design, game design, and testing and verification. The instructional system design stage involves collaborating with subject experts, using cognitive task analysis and Quality Function Deployment to derive game design principles aligned with instructional content, implemented in the game design stage. Finally, 20 participants were recruited for game testing and questionnaire assessment, using descriptive statistics and linear regression as statistical tools. The maximum score for the questionnaire items was 7, with an overall average score in the upper-middle range (5.75), demonstrating system usability and learnability. Regression analysis identified data with higher r² values (r² > 0.2), summarizing key points and suggestions for serious game design and working at heights training.

    摘要 i ABSTRACT ii TABLE OF CONTENTS iii LIST OF TABLES vi LIST OF FIGURES vii LIST OF SYMBOLS AND ABBREVIATIONS ix CHAPTER 1 INTRODUCTION 1 1.1 Research Background 2 1.1.1 Energy Transition 4 1.1.2 Offshore Wind Power 7 1.2 Research Motivation 8 1.3 Research Objectives 10 1.4 Research Scope and Limitations 10 1.5 Thesis Structure 11 CHAPTER 2 LITERATURE REVIEW 13 2.1 Working at Heights Training 13 2.1.1 Personal Protective Equipment 15 2.1.2 Climbing Task Operations 18 2.2 Serious Game Design 19 2.2.1 Game Analysis 19 2.2.2 Game Design and Development 20 2.2.3 Game Evaluation 21 2.3 Safety Training Serious Game 21 2.4 Using Quality Function Deployment in Game Design 22 CHAPTER 3 RESEARCH METHODOLOGY 23 3.1 Research Theories 23 3.1.1 Guided Experiential Learning 23 3.1.2 Research Steps Explain 26 3.1.3 Research Steps Explain 31 3.2 Research Methods 32 3.2.1 ADDIE Method 32 3.2.2 Participant Observation 33 3.2.3 Interview Survey 34 3.2.4 Risk Matrix 36 3.2.5 Heuristics Evaluation 38 3.2.6 Potential Analysis of Heuristic Evaluation for Educational Computer Games 40 3.2.7 Iterative Design 41 3.2.8 User Centered Design 43 3.2.9 Think Aloud 44 3.2.10 Kirkpatrick Evaluation Model 45 3.2.11 System Usability Scale 46 3.2.12 Likert Scale 47 3.2.13 Questionnaire Survey 48 CHAPTER 4 RESEARCH PROCEDURES 49 4.1 Research Process 49 4.2 Instructional System Design 50 4.2.1 Training Courses Analysis 50 4.2.2 Tasks Evaluation Analysis 56 4.2.3 Quality Function Deployment 65 4.3 Serious Game Design 71 4.3.1 Operation Framework Design 71 4.3.2 Game Development 80 4.4 Test and Analysis 88 4.4.1 Testing Feedback 88 4.4.2 Linear Regression 92 4.4.3 Descriptive Statistics 94 CHAPTER 5 CONCLUSION 97 5.1 Conclusion and Suggestion 97 REFERENCES 99 Chinese References 99 English References 99 APPENDIX A 103 APPENDIX B 106

    經濟部能源局(2020) –能源轉型白皮書2020 https://energywhitepaper.tw/#/report
    勞動部職業安全衛生署 (2019) – 離岸風電海域作業安全指引
    勞動部 (2022) – 職業安全衛生設施規則
    葉乃靜 (2012) – 訪談法 interview method, Figure書館學與資訊科學大辭典, https://terms.naer.edu.tw/detail/1678709/
    柯雲娥 (2012) – 調查法 survey method, Figure書館學與資訊科學大辭典, https://terms.naer.edu.tw/detail/1678715/
    彭慰 (1995) – 觀察法 Observational Method, Figure書館學與資訊科學大辭典, https://terms.naer.edu.tw/detail/1679442/
    Abras, C., Maloney-Krichmar, D., & Preece, J. (2004). User-centered design. Bainbridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publications, 37(4), 445-456.
    Akins, J. E. (1973). The oil crisis: this time the wolf is here. Foreign Affairs, 51(3), 462-490.
    Asian, S., Ertek, G., Haksoz, C., Pakter, S., & Ulun, S. (2016). Wind turbine accidents: A data mining study. IEEE Systems Journal, 11(3), 1567-1578.
    Baldwin, M. W., & Dandeneau, S. D. (2009). Putting social psychology into serious games. Social and Personality Psychology Compass, 3(4), 547-565.
    Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of usability studies, 4(3), 114-123.
    Bilgili, M., Yasar, A., & Simsek, E. (2011). Offshore wind power development in Europe and its comparison with onshore counterpart. Renewable and Sustainable Energy Reviews, 15(2), 905-915.
    Bouton, M. E., & Moody, E. W. (2004). Memory processes in classical conditioning. Neuroscience & Biobehavioral Reviews, 28(7), 663-674.
    Branch, R. M., & Merrill, M. D. (2012). Characteristics of instructional design models. Trends and issues in instructional design and technology, 3, 8-16.
    Brooke, J. (1986). System usability scale (SUS): a quick-and-dirty method of system evaluation user information. Reading, UK: Digital equipment Co. Ltd, 43, 1-7.
    Campo, A., Nicolis, S. C., & Deneubourg, J.-L. (2021). Collective Memory: Transposing Pavlov’s Experiment to Robot Swarms. Applied Sciences, 11(6), 2632.
    Chon, S.-H., Timmermann, F., Dratsch, T., Schuelper, N., Plum, P., Berlth, F., Datta, R. R., Schramm, C., Haneder, S., & Späth, M. R. (2019). Serious games in surgical medical education: a virtual emergency department as a tool for teaching clinical reasoning to medical students. JMIR Serious Games, 7(1), e13028.
    Clark, R. E. (2005). Guided Experiential Learning: Training Design and Evaluation.
    Corti, K. (2006). Games-based Learning; a serious business application. Informe de PixelLearning, 34(6), 1-20.
    Dai, L., Ehlers, S., Rausand, M., & Utne, I. B. (2013). Risk of collision between service vessels and offshore wind turbines. Reliability Engineering & System Safety, 109, 18-31.
    Dielenberg, R. A., & McGregor, I. S. (1999). Habituation of the hiding response to cat odor in rats (Rattus norvegicus). Journal of Comparative Psychology, 113(4), 376.
    Fullerton, T. (2014). Game design workshop: a playcentric approach to creating innovative games. CRC press.
    Gibbons, J. H., & Blair, P. D. (1991). US energy transition: on getting from here to there. Physics Today, 44(7), 22-30.
    Häfele, W., & Sassin, W. (1977). The global energy system. Annual Review of Energy, 2(1), 1-30.
    Halim, E., Anisa, N., Arif, A. A., & Hebrard, M. (2021). Producing Design Solutions for Vocabulary Game Using User Centered Design (UCD). 2021 International Conference on Information Management and Technology (ICIMTech) (Vol. 1,pp.470-475). IEEE.
    Huang, X., & Hinze, J. (2003). Analysis of construction worker fall accidents. Journal of construction engineering and management, 129(3), 262-271.
    Hussain, T. S., & Coleman, S. L. (2015). Design and development of training games. Cambridge University Press.
    Jorgensen, D. L. (1989). Participant observation: A methodology for human studies (Vol. 15). Sage.
    Juul, J. (2011). Half-real: Video games between real rules and fictional worlds. MIT Press.
    Kazar, G., & Comu, S. (2021). Effectiveness of serious games for safety training: A mixed method study. Journal of construction engineering and management, 147(8), 04021091.
    KAZAR, G., & Semra, Ç. (2022). Developing a virtual safety training tool for scaffolding and formwork activities. Teknik Dergi, 33(2), 11729-11748.
    Kiral, I. A., Comu, S., & Kavaklioglu, C. (2015). Enhancing the Construction Safety Training by Using Virtual Environment: V-SAFE. 5th International. In 11th Construction Specialty Conference, Vancouver, British Columbia (pp. 161-169).
    Kumar, A., & Labib, A. W. (2004). Applying quality function deployment for the design of a next-generation manufacturing simulation game. International Journal of Engineering Education, 20(5), 787-800.
    Lee, J., & Zhao, F. (2022) – GLOBAL WIND REPORT 2022. Global Wind Energy Council.
    Lewis, J. R., & Sauro, J. (2009). The factor structure of the system usability scale. Human Centered Design: First International Conference, HCD 2009, Held as Part of HCI International 2009, San Diego, CA, USA, July 19-24, 2009 Proceedings 1(pp. 94-103). Springer Berlin Heidelberg.
    Liang, Z., Zhou, K., & Gao, K. (2019). Development of virtual reality serious game for underground rock-related hazards safety training. IEEE Access, 7, 118639-118649.
    Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22 140, 55.
    Mager, R. (1984). Preparing Instructional Objectives (2nd edn), Pitman Learning Inc. California.
    Mohamed, H., & Jaafar, A. (2010). Heuristics evaluation in computer games. 2010 International Conference on Information Retrieval & Knowledge Management (CAMP) (pp. 188-193). IEEE.
    Myers, D. G., & DeWall, C. N. (2018). Myers’ Psychology for the AP Course.
    Nielsen, J. (2005). Ten usability heuristics.
    Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. Proceedings of the SIGCHI conference on Human factors in computing systems, (pp. 249-256).
    Norman, D. A. (1988). The psychology of everyday things. Basic books.
    Norman, D. A. (1986). User centered system design. New perspectives on human-computer interaction.
    Oberdorfer, S., & Latoschik, M. E. (2018). Gamified knowledge encoding: Knowledge training using game mechanics. 2018 10th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games) (pp. 1-2). IEEE.
    Paez, A. (2010). Energy-urban transition: The Mexican case. Energy Policy, 38(11), 7226-7234.
    Pasquier, M., Yersin, B., Vallotton, L., & Carron, P.-N. (2011). Clinical update: suspension trauma. Wilderness & environmental medicine, 22(2), 167-171.
    Pinzón-Cristancho, B., Calderón-Torres, H. A., Mejía-Moncayo, C., & Rojas, A. E. (2019). An educational strategy based on virtual reality and QFD to develop soft skills in engineering students. Workshop on Engineering Applications (pp. 89-100). Cham: Springer International Publishing.
    Rey-Becerra, E., Barrero, L. H., Ellegast, R., & Kluge, A. (2021). The effectiveness of virtual safety training in work at heights: A literature review. Applied Ergonomics, 94, 103419.
    Ritchie, H., & Roser, M. (2021). Energy. Published in Our World in Data. Online at: https://ourworldindata. org/energy.
    Rogers, Y., Sharp, H., & Preece, J. (2011). Interaction Design: Beyond Human. Computer Interaction.
    Sarić, R., Halilović, M., Bajramović, D., Raducan, G., & Čustović, E. (2021). Development of 3D Serious Game: Colorful Classroom to Effectively Teach Children Colors Letters and Numbers. International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies, (pp. 248-263). Cham: Springer International Publishing.
    Sawyer, R. K. (2006). The new science of learning. The Cambridge handbook of the learning sciences, 1, 18.
    Schaffer, R., Castronovo, F., & Durana, O. (2022). Work in Progress: Design and Development of an Immersive Virtual Reality Educational Game for Wind Power Education. 2022 ASEE Annual Conference & Exposition.
    Schell, J. (2008). The Art of Game Design: A book of lenses. CRC press.
    Schneider, S. M., & Sanguinetti, A. (2021). Positive reinforcement is just the beginning: Associative learning principles for energy efficiency and climate sustainability. Energy Research & Social Science, 74, 101958.
    Sicart, M. (2008). Defining Game Mechanics. The international journal of computer game research. Game Studies, 8(2).
    Smernoff, B. J. (1973). Energy policy interactions in the United States. Energy Policy, 1(2), 136-153.
    Smith, P. L., & Ragan, T. J. (2004). Instructional design. John Wiley & Sons.
    Van Someren, M., Barnard, Y. F., & Sandberg, J. (1994). The think aloud method: a practical approach to modelling cognitive. London: AcademicPress, 11, 29-41.
    Yusoffa, A., & Shafirilb, S. (2019). The development of “forest ranger” as a 2D serious game application to increase awareness against illegal logging. Development, 6(2).

    無法下載圖示 校內:2026-02-05公開
    校外:2026-02-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE