| 研究生: |
許晃銘 Hus, Haung-Ming |
|---|---|
| 論文名稱: |
磺酸化磷酸鋯或芘基磺酸/磺酸化嵌段(苯乙烯-異戊二烯-苯乙烯)共聚物之質子傳導層之合成與鑑定 Synthesis and Characterization of Sulfonated Zirconium-Phosphate or Pyrenesulfonic acid / Poly(styrene-b-isoprene-b-styrene) Composite Membrane for Fuel Cell Applications |
| 指導教授: |
郭炳林
Kuo, Ping-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 磺酸化嵌段(苯乙烯-異戊二烯-苯乙烯)共聚高分子 、奈米複合膜 、磷酸鋯 、芘基磺酸 、質子交換膜 、直接甲醇燃料電池 |
| 外文關鍵詞: | Nanocomposite membrane, Pyrenesulfonic acid, Sulfonated Zirconium- phosphate nanoplates, Sulfonated Poly (styrene-b-isoprene-b-styrene), Proton exchange membrane, Direct methanol fuel cell |
| 相關次數: | 點閱:150 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用陰離子聚合反應得嵌段(苯乙烯-異戊二烯-苯乙烯)共聚高分子(PSPIPS),再以磺酸化劑反應成磺酸化嵌段(苯乙烯-異戊二烯-苯乙烯)共聚高分子(sPSPIPS),再將合成之磺酸化磷酸鋯(ZrP)或芘基磺酸(PSA)與sPSPIPS混摻成奈米複合膜,並藉由不同程度之混摻而得一系列質子交換膜。藉由FT-IR圖譜、1H-NMR及GPC圖譜鑑定薄膜結構與分子量。由TEM分析微觀型態,由分析顯示加入PSA確實使親水區域之密度增加,能較有效型成離子渠道,有利質子傳導。由TGA顯示,Td5約在200℃,顯示本系列薄膜具有良好的熱穩定性。複合膜隨混摻比例上升質子交換當量也隨之上升,且含水率、自由水及結合水也隨之上升。其中混摻 PSA之奈米複合膜,於95 %RH、30℃時,質子傳導度可達6.6x10-2 S/cm,為未混摻薄膜36.6倍。由直接甲醇燃料電池單電池組測試結果,可知混摻PSA之複合膜為未混摻薄膜效能之2.28倍,可知混摻PSA唯一提升質子傳導度之有效方法。
A new class of nanocomposite membranes have been developed by
incorporating pyrenesulfonic acid(PSA) or sulfonated zirconium-phosphate nanoplates (ZrP) into Poly (styrene-b-isoprene-b-styrene)(sPSPIPS) matrix via anionic polymerization and sulfonated agent arecasting by solution. The structural characterizations of sPSPIPS systemand PSA or ZrP at various weight ratio is studied by FT-IR, 1H-NMR andGPC spectra. From TEM analysis, the hydrophilic domain for PSAsystem has higher density than pure membrane. From TGA analysis,these membranes possess good thermal stability(Td5=200℃). The IEC ofcomposite membranes increase with PSA and ZrP wt% increasing and thewater uptake, freeze water and bound water of composite membranesincrease with IEC. The highest proton conductivity of compositemembrane of PSA system is 6.6×10-2 Scm-1 under 95%RH at 30℃ being 36.6 times of pure membrane. The maximum power density of compositemembrane of PSA system for Direct Methanol Fuel Cell is 2.28 times ofpure membraneat 30℃.
[01] W. R. Grove, Philos. Mag. Ser., 3, 14, 127 ,1839.
[02]黃如慧、嚴詠聖、鄭敬熹、紀喨勝, "高分子電解質燃料電池 ", 台灣大學化學研究所.
[03]張漢宜, 曹金萍, 林智汶, “PEMFC 燃料電池電解質之現況興未來發展方向”, 化工第49卷第3期, 2002.
[04] D. H. Jung, C. H. Lee, C. S. Kim, D. R. Shin, J. Power Sources, 71, 169
1998.
[05] X. X. Guo, J. H. Fang, T. Watari, K. Tanaka, H. Kita, K. I. Okamoto,
Macromlecules, 35, 6707 ,2002.
[06] M. Rikukawa, K. Sanui, Prog. Polym. Sci., 25, 1463 2000.
[07] V. Neburchilov, Journal of Power Sources, vol. 169, pp. 221-238, 2007.
[08] O. Savadogo, Journal of New Materials for Electrochemical Systems, vol. 1, pp. 47-66, 1998.
[09] T. Gierke, et al., Journal of Polymer Science: Polymer Physics Edition, vol. 19, pp. 1687-1704,1981.
[11] G. Alberti, et al., Journal of Membrane Science, vol. 185, pp. 73-81, 2001.
[12] N. Carretta, et al., Journal of Membrane Science, vol. 166, pp. 189-197, 2000.
[13] Y. Fu and A. Manthiram, Journal of Power Sources, vol. 157, pp. 222-225, 2006.
[14] P. Staiti, et al., Journal of Membrane Science, vol. 188, pp. 71-78, 2001.
[15] N. Li, et al., Journal of Polymer Science Part A: Polymer Chemistry, vol. 46, pp. 2820-2832, 2008.
[16] H. Park, et al., Journal of Membrane Science, vol. 285, pp. 432-443, 2006.
[17] A. Kabasawa, et al., Electrochimica Acta, vol. 54, pp. 1076-1082, 2009.
[18] N. Asano, et al., J. Am. Chem. Soc, vol. 128, pp. 1762-1769, 2006.
[19] T. Nguyen and X. Wang, Journal of Power Sources, 2009.
[20] Y. Yin, et al., Macromolecules, vol. 39, pp. 1189-1198, 2006.
[21] B. Einsla, et al.,Journal of Membrane Science, vol. 255, pp. 141-148, 2005.
[22] L. Zou and M. Anthamatten,Journal of Polymer Science Part A: Polymer Chemistry, vol. 45, pp. 3747-3758, 2007.
[23] K. Miyatake, et al., Journal of Polymer Science Part A: Polymer Chemistry, vol. 45, pp. 157-163, 2006.
[24] W. Essafi, et al.,Macromolecules, vol. 37, pp. 1431-1440, 2004.
[25] J. Saito, et al., Macromolecules, vol. 41, pp. 2415-2420, 2008.
[26] I. Honma, Y. Takeda, J. M. Bae, Solid State Ionics, 120, 255, 1999.
[27] H. Nakajima, I. Honma, Solid State Ionics, 148, 607, 2002.
[28] I. Honma, S. Nomura, H. Nakajima, J. Membr. Sci., 185, 83, 2001.
[29] H. Nakajima, S. Nomura, T. Sugimoto, S. Nishikawa, I. Honma, J.Electrochem. Soc., 149, A953, 2002.
[30] P. Staiti, M. Minutoli, S. Hocevar, J. Power Sources, 90, 231, 2000.
[31] P. Staiti, M. Minutoli, J. Power Sources, 94, 9, 2001.
[32] P. Staiti, Mater. Lett., 47, 241, 2001.
[33]J. M. Amarilla, R. M. Rojas, J. M. Rojo, M. J. Cubillo, A. Linares, J. L.Acosta, Solid State Ionics, 127, 133, 2000.
[34] P. Genova-Dimitrova, B. Baradie, D. Foscallo, C. Poinsignon, J. Y.Sanchez, J. Membr. Sci., 185, 59, 2001.
[35]B. Baradie, C. Poinsignon, J. Y. Sanchez, Y. Piffard, G. Vitter, N. Bestaoui, D. Foscallo, A. Denoyelle, D. Delabouglise, M. Vaujany, J.Power Sources, 74, 8, 1998.
[36] C. Poinsignon, I. Amodio, D. Foscallo, J. Y. Sanchez, Mater.Res. Soc.Symp. Proc., 548, 307, 2000.
[37] B. Bonnet, D. J. Jones, J. Roziere, L. Tchicaya, G. Alberti, M. Casciola,L.Massinelli, B. Baner, A. Peraio, E. Ramunni, J. New Mater. Electrochem.Syst., 3, 87, 2000.
[38] S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, S.Kaliaguine, J. Membr. Sci, 173, 17, 2000.
[39]S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, K. Richau, J. Membr.Sci., 203, 215, 2002.
[40] S. D. Mikhailenko, S. M. J. Zaidi, S. Kaliaguine, Catal. Today, 67, 225,2001.
[41] Krzysztof Szczubiałka, et al. , Langmuir, 16, 2083-2092, 2000.
[42] G.M. Geise, et al. , Polymer, 5815-5822, 2010.
[43]G. Alberti, et al. ,J. Mater. Chem., 14, 1910, 2004.
[44] G. Alberti, et al., Solid State Ionics, 176, 2893, 2005.
[45] I. Honma, Y. Takeda, J. M. Bae, Solid State Ion., 120, 255, 1999.
[46] M. Popall, X. M. Du, Electrochim. Acta., 40, 2305, 1995.
[47] K. D. Kreuer, J. Membr. Sci., 185, 29, 2001.
[48] Baradie, B.; Dodelet, J. P.; Guay, D. J Electroanal Chem,489,101-105, 2000.
[49] A. Clearfield and J.A. Stynes, J. Inorg. Nucl. Chem., 26 , 117–129, 1964.
[50] Vivani, R.; Alberti, G.; Costantino, F.; Nocchetti, M. Micropor Mesopor Mat, 107, (1-2), 58-70, 2008.
[51] Alberti, G.; Casciola, M.; Costantino, U.; Vivani, R. Adv Mater, 8,291-303, 1996.
[52] LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Appl Clay Sci, 15 , 11-29, 1999.
[53] Alexandre, M.; Dubois, P. Mat Sci Eng R, 28, 1-63, 2000.
[54] Maurice Morton, Anionic Polymerization:Principles and practice,Academic press, Inc.,London 1983.
[55] Hsieh H.L. , Quirk R. P., Anionic Polymerization:Principle and Preacticle application,1996.
[56]V. Paganin, et al.,Journal of Applied Electrochemistry, vol. 26, pp. 297-304, 1996.
[57] D. Chu and R. Jiang, Journal of Power Sources, vol. 83, pp. 128-133, 1999.
[58] Y. Chun, et al.,Journal of Power Sources, vol. 71, pp. 174-178, 1998.
[59] S. Cha and W. Lee, Journal of the Electrochemical Society, vol. 146, p. 4055, 1999.
[60] 曾育貞,化學工程系, 台灣科技大學, 2006.
[61] X. Qian, et al., Materials Chemistry and Physics, vol. 74, pp. 98-103, 2002.
[62] F. Gray, Solid polymer electrolytes: fundamentals and technological applications: VCH New York, 1991.
[63] R. Linford, Electrochemical science and technology of polymers: Kluwer Academic Pub, 1990.
[64]Clearfield A ,etc., Ion Exch. Membr., 1,91,1972.
[65] Z. Shi and S. Holdcroft, Macromolecules, vol. 38, pp. 4193-4201, 2005.
[66] Z. Ping, et al.,Polymer, vol. 42, pp. 8461-8467, 2001.
[67] S. Brijmohan and M. Shaw,Polymer, vol. 47, pp. 2856-2864, 2006.
[68] Pranee Phinyocheep etc. , Journal of Applied Polymer Science, Vol. 87, 76–82,2003.
[69]Alberti G, etc., Annu. Rev. Mater. Res., 33,129,2003.
[70] Kwang S. Suh etc. , Current Applied Physics, vol 9,120–125, 2009.
[71] Sully Mar Aviles Barreto etc. , Journal of Membrane Science, 362, 471–477, 2010.
[72] David Suleiman etc. , Thermochimica Acta, 430, 149–154, 2005.
[73] Timothy J. Peckham etc. , Journal of Materials Chemistry, 17, 3255–3268, 2007.