簡易檢索 / 詳目顯示

研究生: 許晃銘
Hus, Haung-Ming
論文名稱: 磺酸化磷酸鋯或芘基磺酸/磺酸化嵌段(苯乙烯-異戊二烯-苯乙烯)共聚物之質子傳導層之合成與鑑定
Synthesis and Characterization of Sulfonated Zirconium-Phosphate or Pyrenesulfonic acid / Poly(styrene-b-isoprene-b-styrene) Composite Membrane for Fuel Cell Applications
指導教授: 郭炳林
Kuo, Ping-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 71
中文關鍵詞: 磺酸化嵌段(苯乙烯-異戊二烯-苯乙烯)共聚高分子奈米複合膜磷酸鋯芘基磺酸質子交換膜直接甲醇燃料電池
外文關鍵詞: Nanocomposite membrane, Pyrenesulfonic acid, Sulfonated Zirconium- phosphate nanoplates, Sulfonated Poly (styrene-b-isoprene-b-styrene), Proton exchange membrane, Direct methanol fuel cell
相關次數: 點閱:150下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用陰離子聚合反應得嵌段(苯乙烯-異戊二烯-苯乙烯)共聚高分子(PSPIPS),再以磺酸化劑反應成磺酸化嵌段(苯乙烯-異戊二烯-苯乙烯)共聚高分子(sPSPIPS),再將合成之磺酸化磷酸鋯(ZrP)或芘基磺酸(PSA)與sPSPIPS混摻成奈米複合膜,並藉由不同程度之混摻而得一系列質子交換膜。藉由FT-IR圖譜、1H-NMR及GPC圖譜鑑定薄膜結構與分子量。由TEM分析微觀型態,由分析顯示加入PSA確實使親水區域之密度增加,能較有效型成離子渠道,有利質子傳導。由TGA顯示,Td5約在200℃,顯示本系列薄膜具有良好的熱穩定性。複合膜隨混摻比例上升質子交換當量也隨之上升,且含水率、自由水及結合水也隨之上升。其中混摻 PSA之奈米複合膜,於95 %RH、30℃時,質子傳導度可達6.6x10-2 S/cm,為未混摻薄膜36.6倍。由直接甲醇燃料電池單電池組測試結果,可知混摻PSA之複合膜為未混摻薄膜效能之2.28倍,可知混摻PSA唯一提升質子傳導度之有效方法。

    A new class of nanocomposite membranes have been developed by
    incorporating pyrenesulfonic acid(PSA) or sulfonated zirconium-phosphate nanoplates (ZrP) into Poly (styrene-b-isoprene-b-styrene)(sPSPIPS) matrix via anionic polymerization and sulfonated agent arecasting by solution. The structural characterizations of sPSPIPS systemand PSA or ZrP at various weight ratio is studied by FT-IR, 1H-NMR andGPC spectra. From TEM analysis, the hydrophilic domain for PSAsystem has higher density than pure membrane. From TGA analysis,these membranes possess good thermal stability(Td5=200℃). The IEC ofcomposite membranes increase with PSA and ZrP wt% increasing and thewater uptake, freeze water and bound water of composite membranesincrease with IEC. The highest proton conductivity of compositemembrane of PSA system is 6.6×10-2 Scm-1 under 95%RH at 30℃ being 36.6 times of pure membrane. The maximum power density of compositemembrane of PSA system for Direct Methanol Fuel Cell is 2.28 times ofpure membraneat 30℃.

    目錄 中文摘要………………………………………………………………..I 英文摘要………………………………………………………...……….II 致謝…………………………………………………………………….III 目錄…………………………………………………………………….IV 表目錄………………………………………………………………VIII 圖目錄………………………………………………………………..…IX 第一章 緒論………………………………………………………...….1 第二章 文獻回顧…………………………………………………...….3 2-1 燃料電池之歷史與優點……………………………………3 2-2 燃料電池種類……………………………..……………….…3 2-3 質子交換膜燃料電池….……………………………..………7 2-4 直接甲醇燃料電池….…………….…………………………9 2-5 質子交換膜….………………………………………………10 2-5.1 改質型氟系質子交換膜…………………………….12 2-5.2 磺酸化碳氫質子交換膜………………………….….13 2-5.3 有機-無機膜…………………..…………………….14 2-5.4 親水性無機及其複合膜膜……………………….….16 2-6 磷酸鋯之結構及其衍生物….………………………………16 2-7 陰離子聚合反應原理….……………………………………18 2-7.1 起始聚合與起始反應……………………………….19 2-7.2 成長反應…………………..……………………….22 2-7.3 無終止反應與其特色………..……………….…..….23 2-8 嵌段共聚物……………..….……………………………..…23 2-8.1 嵌段共聚物之合成原理…………………..………....24 2-9 MEA製備……..…..….……………………………………..25 2-10 極化曲線……………..….…………………………………..26 2-11 交流阻抗分析……..….……………………………………..27 2-11.1 基礎電路簡介…………………..…………………..27 2-11.2 交流阻抗分析…………………..………………….30 第三章 實驗內容………………………………………….………….34 3-1 實驗藥品.……..…..….………………………….…………..34 3-2 實驗儀器.……..…..….……………….……………………..35 3-3 磺酸化共具高分子之製備.……..…………………………..36 3-3.1 嵌段(苯乙烯-異戊二烯-苯乙烯)共聚高分子之製備流 程……………………………………………………..36 3-3.2 磺酸化嵌段(苯乙烯-異戊二烯-苯乙烯)共聚高分子之 製備流程……………………………………………..37 3-3.3 磺酸化磷酸鋯之製備…..…..……………….……….38 3-4 質子交換膜之鑑定.……..……………………….………..39 3-4.1 傅立葉轉換紅外線光譜儀..………..……….……….39 3-4.2 核磁共振光譜儀…………………………….……….39 3-4.3 離子交換當量…………….……………….……….39 3-4.4 熱重分析…………………….…………….……….40 3-4.5 凝膠滲透層析儀…………………...……………….40 3-4.6 含水率測試….…………….………...……………….40 3-4.7 結合水………….…………….………...…………….41 3-4.8 交流阻抗分析…………….………...……………….42 3-4.9 甲醇穿透…….…………….………...…….……….43 3-4.10 X光繞射儀…….…………….……….…………….44 3-4.11 微相結構…….…………….………...…………….44 3-4.12 膜電極製備與單電池測試……………………….45 第四章 實驗內容…………………………………………….……….46 4-1 質子交換膜之製備與鑑定.……..…………………………..46 4-1.1 傅立葉轉換紅外線光譜…...……………….……….46 4-1.2 氫式核磁共振光譜……………...………….……….48 4-1.3 凝膠滲透層析法……….………...………………….50 4-1.4 X光繞射圖譜.…………….………...……………….50 4-2 熱重分析………….…………………...…………………….51 4-3 質子交換當量與質子傳導度...………..…………….….….53 4-4 含水率與質子交換膜中水狀態.…………………….……….57 4-5微相結構…………….………...……………………………..61 4-6 甲醇穿透…….…………….………...……………..……….63 4-7 單電池測試…….…………….……….……………..……….64 第五章 結論…………………………………………………….…….66 第六章 參考文獻…….……………………………………….…….68 表目錄 Table 2-1: Summary of Fuel-Cell types………………………...……... 6 Table 2-2: Summary of inorganic-organic composite membranes under developmemt 15 Table 2-3: Impedance equations for equivalent circuit elements…….…29 Table 4-1: The IEC values and conductivity of sPSPIPS, sPSPIPS-PSA-x %, sPSPIPS-ZrP-x% and sPSPIPS-PSA-1%- ZrP-1%.............55 Table 4-2: The IEC values and state of water of sPSPIPS, sPSPIPS-PSA- x%, sPSPIPS-ZrP-x% and sPSPIPS-PSA-1%- ZrP-1%...........58 Table 4-3: The IEC values and state of water of sPSPIPS, sPSPIPS-PSA- x %, sPSPIPS-ZrP-x% and sPSPIPS-PSA-1%- ZrP-1%..........63 圖目錄 Figure 2-1: Membrane electrode assembly, MEA………………….…....8 Figure 2-2: Operating scheme of DMFC……………………………….10 Figure 2-3: Structure of Nafion…………………………………....…...11 Figure 2-4: Cluster-network model of hydrated Nafion………..….…....11 Figure 2-5: Schematic representation of redistribution of ion exchange sites which occurs on dehydration of polymer………….....12 Figure 2-6: Schematic representation of the microstructures of Nafion and a sulfonated poly(ether ketone)…….……...………............13 Figure 2-7: Chemical structure of unit cell of α-zirconium phosphate.....17 Figure 2-8: Chemical structure of Sulfonated Zirconium-Phosphate…..17 Figure 2-9: Polarization curve…………….………………………….....27 Figure2-10: Phase diagram showing the relationship between alternating current and voltage signals at frequency ω…………….......28 Figure2-11: Equivalent circuit of an electrochemical cell……………..30 Figure2-12: Nyquist plot of equivalent circuit……………….………31 Figure2-13: Impedance representation of a resistor and a Constant Phase Element (a) in series; (b) in parallel…………………..….32 Figure 3-1: Preparation of polystyrene-polyisoprene-polystyrene)…….36 Figure 3-2: 1-Pyrene sulfonic acid………………………...……………37 Figure 3-3: (a) Sulfonated agent and (b) Sulfonated Poly(styrene-b-isoprene-b-styrene)………………………..38 Figure 3-4 : Schematic of the measurement cell for proton conductivity.43 Figure 3-5 : Scheme diagram of the cell for the methanol crossover measurement…………..………………………………..….44 Figure 4-1: FTIR spectra of PSPIPS and sPSPIPS…..………………….47 Figure 4-2: H-NMR spectra of PSPIPS……………………….………...49 Figure 4-3: H-NMR spectra of PSPIPS and sPSPIPS…………………..49 Figure 4-4: GPC of PSPIPS……………...……………….……………..50 Figure 4-5: X-ray powder pattern of ZrP………………………….…….51 Figure 4-6: TGA spectra of PSPIPS and sPSPIPS………………...…….52 Figure 4-7: Differentiate TGA spectra of PSPIPS and sPSPIPS………..52 Figure 4-8: The residual of PSPIPS and sPSPIPS…………………...….53 Figure 4-9: Conductivity of the sPSPIPS, sPSPIPS-PSA-x%, sPSPIPS-Zr P -x%, sPSPIPS-PSA-1%-ZrP-1%and Nafion at 330.15K and 95% RH……………………………………………............56 Figure4-10: Temperature dependence of the proton Conductivity for (a) sPSPIPSsPSPIPS-PSA-x% (b) sPSPIPS, sPSPIPS-ZrP-x% at 95RH……………………………………………………....56 Figure4-11: DSC thermograms of the sPSPIPS and sPSPIPS-PSA-x%..59 Figure4-12: DSC thermograms of the sPSPIPS, sPSPIPS-ZrP-x% and sPSPIPS-PSA-1%-ZrP-1%...................................................59 Figure4-13: The degree of bound water of sPSPIPS-PSA-x%................60 Figure4-14: The dependences of conductivity on water uptake at 303.15K ,333.15K and 353.15K………...…………...….....60 Figure4-15: TEM micrographs of (a)Nafion(b)sPSPIPS(c) sPSPIPS-PSA-1.5% (d) sPSPIPS-PSA-2%(e) sPSPIPS-PSA-2.5%(f) sPSPIPS-ZrP-2% at 100nm scale bar…………………………………………………..……...62 Figure4-16: Selectivity of sPSPIPS, sPSPIPS-PSA-x% and sPSPIPS-ZrP-2%..................................................................64 Figure4-17: Schematic diagram of the single cell test system for DMFC…………..….………………………………………65 Figure4-18: Polarization curves for the sPSPIPS-PSA-2% and sPSPIPS operating at 30℃………………...……………...…………65

    [01] W. R. Grove, Philos. Mag. Ser., 3, 14, 127 ,1839.
    [02]黃如慧、嚴詠聖、鄭敬熹、紀喨勝, "高分子電解質燃料電池 ", 台灣大學化學研究所.
    [03]張漢宜, 曹金萍, 林智汶, “PEMFC 燃料電池電解質之現況興未來發展方向”, 化工第49卷第3期, 2002.
    [04] D. H. Jung, C. H. Lee, C. S. Kim, D. R. Shin, J. Power Sources, 71, 169
    1998.
    [05] X. X. Guo, J. H. Fang, T. Watari, K. Tanaka, H. Kita, K. I. Okamoto,
    Macromlecules, 35, 6707 ,2002.
    [06] M. Rikukawa, K. Sanui, Prog. Polym. Sci., 25, 1463 2000.
    [07] V. Neburchilov, Journal of Power Sources, vol. 169, pp. 221-238, 2007.
    [08] O. Savadogo, Journal of New Materials for Electrochemical Systems, vol. 1, pp. 47-66, 1998.
    [09] T. Gierke, et al., Journal of Polymer Science: Polymer Physics Edition, vol. 19, pp. 1687-1704,1981.
    [11] G. Alberti, et al., Journal of Membrane Science, vol. 185, pp. 73-81, 2001.
    [12] N. Carretta, et al., Journal of Membrane Science, vol. 166, pp. 189-197, 2000.
    [13] Y. Fu and A. Manthiram, Journal of Power Sources, vol. 157, pp. 222-225, 2006.
    [14] P. Staiti, et al., Journal of Membrane Science, vol. 188, pp. 71-78, 2001.
    [15] N. Li, et al., Journal of Polymer Science Part A: Polymer Chemistry, vol. 46, pp. 2820-2832, 2008.
    [16] H. Park, et al., Journal of Membrane Science, vol. 285, pp. 432-443, 2006.
    [17] A. Kabasawa, et al., Electrochimica Acta, vol. 54, pp. 1076-1082, 2009.
    [18] N. Asano, et al., J. Am. Chem. Soc, vol. 128, pp. 1762-1769, 2006.
    [19] T. Nguyen and X. Wang, Journal of Power Sources, 2009.
    [20] Y. Yin, et al., Macromolecules, vol. 39, pp. 1189-1198, 2006.
    [21] B. Einsla, et al.,Journal of Membrane Science, vol. 255, pp. 141-148, 2005.
    [22] L. Zou and M. Anthamatten,Journal of Polymer Science Part A: Polymer Chemistry, vol. 45, pp. 3747-3758, 2007.
    [23] K. Miyatake, et al., Journal of Polymer Science Part A: Polymer Chemistry, vol. 45, pp. 157-163, 2006.
    [24] W. Essafi, et al.,Macromolecules, vol. 37, pp. 1431-1440, 2004.
    [25] J. Saito, et al., Macromolecules, vol. 41, pp. 2415-2420, 2008.
    [26] I. Honma, Y. Takeda, J. M. Bae, Solid State Ionics, 120, 255, 1999.
    [27] H. Nakajima, I. Honma, Solid State Ionics, 148, 607, 2002.
    [28] I. Honma, S. Nomura, H. Nakajima, J. Membr. Sci., 185, 83, 2001.
    [29] H. Nakajima, S. Nomura, T. Sugimoto, S. Nishikawa, I. Honma, J.Electrochem. Soc., 149, A953, 2002.
    [30] P. Staiti, M. Minutoli, S. Hocevar, J. Power Sources, 90, 231, 2000.
    [31] P. Staiti, M. Minutoli, J. Power Sources, 94, 9, 2001.
    [32] P. Staiti, Mater. Lett., 47, 241, 2001.
    [33]J. M. Amarilla, R. M. Rojas, J. M. Rojo, M. J. Cubillo, A. Linares, J. L.Acosta, Solid State Ionics, 127, 133, 2000.
    [34] P. Genova-Dimitrova, B. Baradie, D. Foscallo, C. Poinsignon, J. Y.Sanchez, J. Membr. Sci., 185, 59, 2001.
    [35]B. Baradie, C. Poinsignon, J. Y. Sanchez, Y. Piffard, G. Vitter, N. Bestaoui, D. Foscallo, A. Denoyelle, D. Delabouglise, M. Vaujany, J.Power Sources, 74, 8, 1998.
    [36] C. Poinsignon, I. Amodio, D. Foscallo, J. Y. Sanchez, Mater.Res. Soc.Symp. Proc., 548, 307, 2000.
    [37] B. Bonnet, D. J. Jones, J. Roziere, L. Tchicaya, G. Alberti, M. Casciola,L.Massinelli, B. Baner, A. Peraio, E. Ramunni, J. New Mater. Electrochem.Syst., 3, 87, 2000.
    [38] S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, S.Kaliaguine, J. Membr. Sci, 173, 17, 2000.
    [39]S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, K. Richau, J. Membr.Sci., 203, 215, 2002.
    [40] S. D. Mikhailenko, S. M. J. Zaidi, S. Kaliaguine, Catal. Today, 67, 225,2001.
    [41] Krzysztof Szczubiałka, et al. , Langmuir, 16, 2083-2092, 2000.
    [42] G.M. Geise, et al. , Polymer, 5815-5822, 2010.
    [43]G. Alberti, et al. ,J. Mater. Chem., 14, 1910, 2004.
    [44] G. Alberti, et al., Solid State Ionics, 176, 2893, 2005.
    [45] I. Honma, Y. Takeda, J. M. Bae, Solid State Ion., 120, 255, 1999.
    [46] M. Popall, X. M. Du, Electrochim. Acta., 40, 2305, 1995.
    [47] K. D. Kreuer, J. Membr. Sci., 185, 29, 2001.
    [48] Baradie, B.; Dodelet, J. P.; Guay, D. J Electroanal Chem,489,101-105, 2000.
    [49] A. Clearfield and J.A. Stynes, J. Inorg. Nucl. Chem., 26 , 117–129, 1964.
    [50] Vivani, R.; Alberti, G.; Costantino, F.; Nocchetti, M. Micropor Mesopor Mat, 107, (1-2), 58-70, 2008.
    [51] Alberti, G.; Casciola, M.; Costantino, U.; Vivani, R. Adv Mater, 8,291-303, 1996.
    [52] LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Appl Clay Sci, 15 , 11-29, 1999.
    [53] Alexandre, M.; Dubois, P. Mat Sci Eng R, 28, 1-63, 2000.
    [54] Maurice Morton, Anionic Polymerization:Principles and practice,Academic press, Inc.,London 1983.
    [55] Hsieh H.L. , Quirk R. P., Anionic Polymerization:Principle and Preacticle application,1996.
    [56]V. Paganin, et al.,Journal of Applied Electrochemistry, vol. 26, pp. 297-304, 1996.
    [57] D. Chu and R. Jiang, Journal of Power Sources, vol. 83, pp. 128-133, 1999.
    [58] Y. Chun, et al.,Journal of Power Sources, vol. 71, pp. 174-178, 1998.
    [59] S. Cha and W. Lee, Journal of the Electrochemical Society, vol. 146, p. 4055, 1999.
    [60] 曾育貞,化學工程系, 台灣科技大學, 2006.
    [61] X. Qian, et al., Materials Chemistry and Physics, vol. 74, pp. 98-103, 2002.
    [62] F. Gray, Solid polymer electrolytes: fundamentals and technological applications: VCH New York, 1991.
    [63] R. Linford, Electrochemical science and technology of polymers: Kluwer Academic Pub, 1990.
    [64]Clearfield A ,etc., Ion Exch. Membr., 1,91,1972.
    [65] Z. Shi and S. Holdcroft, Macromolecules, vol. 38, pp. 4193-4201, 2005.
    [66] Z. Ping, et al.,Polymer, vol. 42, pp. 8461-8467, 2001.
    [67] S. Brijmohan and M. Shaw,Polymer, vol. 47, pp. 2856-2864, 2006.
    [68] Pranee Phinyocheep etc. , Journal of Applied Polymer Science, Vol. 87, 76–82,2003.
    [69]Alberti G, etc., Annu. Rev. Mater. Res., 33,129,2003.
    [70] Kwang S. Suh etc. , Current Applied Physics, vol 9,120–125, 2009.
    [71] Sully Mar Aviles Barreto etc. , Journal of Membrane Science, 362, 471–477, 2010.
    [72] David Suleiman etc. , Thermochimica Acta, 430, 149–154, 2005.
    [73] Timothy J. Peckham etc. , Journal of Materials Chemistry, 17, 3255–3268, 2007.

    下載圖示 校內:2016-08-24公開
    校外:2016-08-24公開
    QR CODE