| 研究生: |
莊琮亮 Chuang, Tsung-Liang |
|---|---|
| 論文名稱: |
設計顯微鏡微米壓印器應用於形成神經細胞網路之應用 Design of Microscopy-based Microcontact Printing for Structural Patterning of Neuronal Cells |
| 指導教授: |
陳家進
Chan, Jia-Jin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 右旋光性聚離胺酸 、顯微鏡微米壓印器 、氫氧基化表面 、厚度控制方塊 、胎牛血清白蛋白 |
| 外文關鍵詞: | thickness control square, hydroxyl surface, microscopy-based printing holder, BSA, poly-D-lysine |
| 相關次數: | 點閱:112 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了解神經細胞的於二維平面活動的行為,必須將神經細胞培養在位於修飾過的基材表面上,由細胞外基質或細胞黏著因子所構成之幾何設計圖形中。最近的研究中由於微米壓印技術的使用,使得控制細胞的位置和生長得以實踐。我們的研究目的是設計出簡單不昂貴的顯微鏡微米壓印器來調控可引導細胞生長的圖形於基材表面上的位置。 於此研究中,利用以微米製程所製造出的聚二甲基矽氧火完 (PDMS) 的微米印磋,將右旋光性聚離胺 (PDL), 細胞黏著子,轉印至經修飾過的基材表面上。而且,我們觀察PDL溶液濃度,即印墨濃度,與由壓力感測器所得之轉印壓力的搭配關係, 對染有螢光的多肽類所壓印而成之圖形的線寬所造成的影響。對不同印墨濃度範圍及施加壓力間所造成的結果是為更進一步的研究應用中所需要的,因此我們提供更進一步的觀察。我們相信我們的設計搭配更進一步的配備與修理飾能提供實用的的微米壓印器來幫助研究神經細胞的行為,如形成神經細胞構成的圖形及神經網路,且可避免於壓印時施加過大的壓力而造成印磋的變形,導致其印磋上的圖紋之身寬比降低而使得印墨較低的有效轉印或拓印等情形。然而轉印的結果亦和PDL的濃度有關。
To culture neuronal cells grown in a geometric pattern on a modified substrate plate is essential to understand the neuronal cell behavior. Recent studies have made it possible to control neuronal cell positioning as well as outgrowth by using the microcontact printing technique. The aim of this study was to design an inexpensive microscopy-based microcontact printing device for aligning the pattern to the substrate for guiding neuronal growth. In the study, the microfabrication of the microcontact printing stamp of Polydimethylsiloxane (PDMS) was used to define the cytophilic region by transferring poly-D-lysine (PDL), cell adhesion factor, to surface-modified substrate. The cytophobic region was then developed by immersing the printed PDL substrate in bovine serum albumin (BSA). Our study examined the concentrations of PDL to form cytophilic region and provides a micro contacting scheme to produce a reliable structural pattern on the substrate. Furthermore, we investigate the relationships between the ink concentration and printing force monitored from torque sensor to the peptide pattern from fluorescent image of printing lines. Further studies are needed to systematically investigate the suitable ranges for varied ink concentrations. It is believed that our device with some further modification can provide an inexpensive microcontact device to study neuronal behaviors, i.e. neuronal patterning and network/synapse formation. Too low in applying force might cause the poor transfer rate but the too high in applying force might cause the deformation of stamp due to the low ratio of depth to width of the stamp. However, this result is affected by the PDL concentration applied.
[1] B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J. P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, and R. Stutz, “Printing meets lithography: Soft approaches to high-resolution patterning,” IBM Journal of Research & Development, vol. 45, no. 5, pp. 697-719, 2001.
[2] D. W. Branch, J. M. Corey, J. A. Weyhenmeyer, G. J.
Brewer, and B. C. Wheeler. “Microstamp patterns of biomolecules for high-resolution neuronal networks,” Medical & Biological Engineering & Computing, vol. 361, no. 1, pp. 135-141, 1998.
[3] M. Matsuzawa, T. Tabata, W. Knoll and M. Kano, “Formation of hippocampal synapses on patterned substrate of a laminin-derived synthetic peptide,” European Journal of Neuroscience, vol. 12, pp. 903-910, 2000.
[4] T. Cornish, D. W. Branch, B. C. Wheeler, and J. T. Campanelli, “Microcontact Printing: A Versatile Technique for the Study of Synaptogenic Molecules,” Molecular and Cellular Neuroscience, vol. 20, pp. 140–153, 2002.
[5] G. Csucsa, R. Michel, Jost W. Lussic, Marcus Textor, and G. Danuser, “Microcontact printing of novel co-polymers in combination with proteins for cell-biological applications,” Biomaterials, vol. 24, pp. 1713–1720, 2003.
[6] P. Clark, S. Britland and P. Connolly, “Growth cone guidance and neuron morphology on micropatterned laminin surfaces,” Journal of Cell Science, vol. 105, pp. 203–212, 1993.
[7] L. B. Goetting, T. Deng, and G. M. Whitesides, “Microcontact printing of alkanephosphonic acids on aluminum: Pattern transfer by wet chemical etching,” Langmuir, vol.15, no. 4, pp. 1182-1191, 1999.
[8] M. Leufgen, A. Lebib, T. Muck, U. Bass, V. Wagner, T. Borzenko, G. Schmidt, J. Geurts, and L. W. Molenkamp, “Organic thin-film transistors fabricated by microcontact printing,” Applied Physics Letters, vol.84, no.9, pp. 1582-1584, 2004.
[9] S. Honma, W. Nakamura, T. Shirakawa, and K. Honma, “Diversity in the circadian periods of single neurons of the rat suprachiasmatic nucleus depends on nuclear structure and intrinsic period,” Neuroscience Letters, vol. 358, pp.173-176, 2004.
[10] M. Mrksich, L. E. Dike, J. Tien, D. E. Ingber, and G. M. Whitesides, “Using Microcontact Printing to Pattern the Attachment of Mammalian Cells to Self-Assembled Monolayers of Alkanethiolates on Transparent Films of Gold and Silver,” Experimental Cell Researh, vol. 235, pp.305–313, 1997.
[11] U. Egert D. Heck, and A. Aertsen, “Two-dimensional monitoring of spiking networks in acute brain slices,” Experimental Brain Research, vol. 142, pp. 268–274, 2002.
[12] T. A. Desai, D. J. Hansford, and M. Ferrari, “Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation,” Biomolecular Engineering, vol. 17, pp. 23–36 , 2000.
[13] G. J. Brewer a, S. Deshmane, and E. Ponnusamy , “Precocious axons and improved survival of rat hippocampal neurons on lysine–alanine polymer substrates,” Journal of Neuroscience Methods, vol. 85, pp. 13–20, 1998.
[14] E. S. Harris, T. M. McIntyre, S. M. Prescott, and G. A. Zimmerman, “The leukocyte Integrins,” Journal of Biological Chemistry, vol. 275, no.31, pp. 23409-23412, 2000.
[15] K. J. Tomaseli, L. F. Reichardt, and J. L. Bixby, “Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular
matrices,” The Journal of Cell Biology, vol. 103, pp. 2659-2672, 1986.
[16] H. Sorribas, C. Padeste, and L. Tiefenauer, “Photolithographic generation of protein micropatterns for neuron culture applications,” Biomaterials, vol. 23, pp. 893-900, 2002.
[17] J. D. Mendelsohn, S. Y. Yang, J. Hiller, A. I. Hochbaum, and M. F. Rubner, “ Rational Design of Cytophilic and Cytophobic Polyelectrolyte Multilayer Thin Films,” Biomacromolecules, vol. 4, pp. 96-106, 2003.
[18] M. Matsuzawa, P. Liesi, and W. Knoll, “Chemically modifying glass surfaces
to study substratum-guided neurite outgrowth in culture,” Journal of Neuroscience Methods, vol. 69, pp. 189–196, 1996.
[19] P. Hamerli, T. Weigel, T. Groth, and D. Paul, “Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes,” Biomaterials, vol. 22, pp.3989-3999, 2003.
[20] A. Harsch, J. Calderon, R. B. Timmons, and G. W. Gross, ” Pulsed plasma deposition of allylamine on polysiloxane: a stable surface for neuronal cell adhesion” Journal of Neuroscience Methods, vol, 98, no. 2, pp. 135-144, 2000.
[21] D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, “Long-Term Maintenance of Patterns of Hippocampal Pyramidal Cells on Substrates of Polyethylene Glycol and Microstamped Polylysine,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 3, pp. 290-300, 2000.
[22] J. C. Changa, G. J. Brewerb, and B. C. Wheeler, “A modified microstamping technique enhances polylysine transfer and neuronal cell patterning,” Biomaterials, vol. 24, pp. 2863–2870, 2003.
[23] A. Soekarno, B. Lom, and P. E. Hockberger, “Path finding by neuroblastoma cells is directed by preferential adhesion to positively charged surfaces,” Neuroimage, vol. 1, pp. 129–144, 1993.
[24] C. Marzolin, A. Terfort, J. Tien, and G. M. Whitesides, “Patterning of a polysiloxane precursor to silicate glasses by microcontact printing,” Thin Solid Films, vol. 315, pp. 9–12, 1998.
[25] H. A.Biebuyck, N. B. Larsen, E. Delamarche, and B. Michel, “Lithography beyond Light: Microcontact Printing with Monolayer Resists,” IBM Journal of Research & Development, vol. 41, pp. 159-170, 1997.
[26] C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned Microcontact Printing of Micrometer-Scale Poly-L-Lysine Structures for Controlled Growth of Cultured Neurons on Planar Microelectrode Arrays,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 1, pp. 17-21, 2000.
[27] G. Paradossi, E. Chiessi, and A. Malovikova, “Study of the interactions of D- and L-polylysine enantiomers withpectate in aqueous solutions,” Biopolymers, vol. 50, no. 2, pp. 201-209, 1999.
[28] T. Cornish, and D. W. Branch, B. C. Wheeler, and J. T. Campanelli, “Microcontact Printing: A versatile technique for the study of synaptogenic molecules”, Molecular and Cellular Neuroscience, vol. 20, pp. 140-153, 2002.
[29] N. Laurent, C. S Wattiaux-De, E. Mihaylova, E. Leontieva, M. T. Warnier-Pirotte, R. Wattiaux, and M. Jadot, “Uptake by rat liver and intracellular fate of plasmid DNA complexed with poly-L-lysine or poly-D-lysine,” FEBS Letter, vol. 443, no.1, pp. 61-65, 1999.
[30] N. Lambeng, P. P. Michel, B. Brugg, Y. Agid, and M. Ruberg, “Mechanisms of apoptosis in PC12 cells irreversibly differentiated with nerve growth factor and cyclic AMP,” Brain Research, vol. 82, pp. 160–168, 1999.