簡易檢索 / 詳目顯示

研究生: 粘耕豪
Nian, Geng-Hao
論文名稱: 三碘化甲胺鉛鈣鈦礦的結構與光電特性之研究
Studies of structural and photoelectric properties of MAPbI3 perovskite
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: CH3NH3PbI3奈米線光導體元件單晶結晶時間
外文關鍵詞: CH3NH3PbI3 nanowires, photoconductors, crystallization time
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用流體引導之反溶劑蒸氣輔助結晶法法製作出三碘化甲胺鉛(CH3NH3PbI3)奈米線,並透過將苯乙基碘化銨[Phenethylammonium iodide(PEAI)]加入CH3NH3PbI3溶液中或將溶劑由二甲基甲醯胺(DMF)混摻入γ-丁内酯(GBL)的方式來延緩CH3NH3PbI3結晶時間,延緩結晶時間程度不同得到線型和塊狀兩種不同的CH3NH3PbI3結晶形貌,並且將線型結晶應用於光感測元件上。本文利用原子力顯微鏡、掃描式電子顯微鏡、光學顯微鏡觀察不同製程下的CH3NH3PbI3奈米線,發現結晶速度變慢時會出現更密集尺度更小的奈米線,而延緩結晶速度再更慢時可以看到結晶型態由線狀變為方形,並且減緩結晶速度會使奈米線更接近單晶,透過傅立葉轉換紅外線光譜儀、光致螢光光譜、低掠角X光繞射儀探討奈米線的材料特性,得知不同製程參數並不會影響CH3NH3PbI3鈣鈦礦的結晶結構,並且激子在延緩結晶時間後的奈米線中有較長的生命週期。
    將CH3NH3PbI3奈米線應用在光感測器上,在光導體元件中量測不同波長雷射光照射下的電性,得知藍光照射時,元件有最大光響應,而紅、綠光照射時,元件光響應較小,並且延緩結晶時間可以得到響應率較好的光導體元件,接著透過導電式原子力顯微鏡分析不同製程參數CH3NH3PbI3結晶的光電流,其中方形結晶表現出了超乎預期的性能。
    本研究解析CH3NH3PbI3奈米線的結構及光電特性,成功解析減緩結晶時間對CH3NH3PbI3形貌造成的影響,並以減緩結晶時間方法製造出接近單晶的奈米線,再藉由改良後的奈米線製作出性能更優異的光偵測器元件,光電流甚至可以達到改良前元件的30倍。

    In this study, a fluid-guided, antisolvent, vapor-assisted crystallization method was used to fabricate CH3NH3PbI3 nanowires. Adding phenethylammonium iodide (PEAI) or γ-butyrolactone (GBL) to the CH3NH3PbI3 precursor solution slowed down the crystallization time of CH3NH3PbI3, whose crystallinity could be increased.
    The morphology of the CH3NH3PbI3 crystals were analyzed using an atomic force microscope (AFM) and scanning electron microscope. The size of CH3NH3PbI3 nanowires was smaller than those fabricated without the addition of PEAI or GBL. As an excessive proportion of PEAI or GBL was added, the crystalline form of CH3NH3PbI3 changed from wire to square shaped. Time-resolved photoluminescence analysis reveals that excitons have a longer lifetime in the CH3NH3PbI3 crystals that were grown by slow crystallization compared with that by fast crystallization. Conductive AFM was applied to measure the photocurrents of various CH3NH3PbI3 crystals; among them, square-shaped crystals showed the best performance. The photoconductors were prepared on the basis of the produced CH3NH3PbI3 nanowires to detect different wavelengths of light. We analyzed the effect of extending crystallization time on the preparation of CH3NH3PbI3 nanowires and deeply investigated their crystalline structure and photoelectrical properties. The CH3NH3PbI3 nanowires with improved crystallinity were successfully fabricated and applied to photosensors with excellent performance.

    中文摘要 I Extended Abstract III 致謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XVIII 第一章 簡介 1 1.1 CH3NH3PbI3簡介 1 1.2 研究動機 3 第二章 光偵測器概論 5 2.1 鈣鈦礦光偵測器的基本結構與特性 5 2.2 水平式光導體元件的基本結構與特性 7 2.3 光導體元件的基本公式及特性 8 2.3.1 響應率(Responsivity, R) 8 2.3.2 雜訊等效功率(noise equivalent power, NEP) 8 2.3.3 探測率(Detectivity, D) 9 2.3.4 載子遷移率(mobility, μ) 9 2.3.5 電流開關比(on/off ratio) 10 第三章 實驗方法與分析儀器介紹 12 3.1 實驗材料 12 3.1.1 鈣鈦礦材料 12 3.1.2 陽離子添加物 12 3.1.3 有機溶劑 12 3.2 CH3NH3PbI3奈米線光導體元件製程 13 3.2.1 清洗基板 13 3.2.2 CH3NH3PbI3溶液配置 13 3.2.3 CH3NH3PbI3+PEAI溶液配置 13 3.2.3 CH3NH3PbI3奈米線製作 13 3.2.4 CH3NH3PbI3+PEAI奈米線製作 14 3.2.4 蒸鍍電極 14 3.3 分析儀器 15 3.3.1 半導體參數分析儀 15 3.3.2 光感測系統 15 3.3.3 傅立葉轉換紅外線光譜儀(Fourier-transform infrared spectroscopy,FTIR) 15 3.3.4 原子力顯微鏡(Atomic Force Microscope,AFM) 16 3.3.5 導電式原子力顯微鏡(Conductive Atomic Force Microscope,C-AFM) 16 3.3.6 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 16 3.3.7 光致螢光光譜(Photoluminescence Spectroscopy,PL) 17 3.3.8 低掠角X光繞射儀(X ray Diffraction Spectroscopy,XRD) 17 第四章 實驗結果與討論 22 4.1 前言 23 4.2 CH3NH3PbI3結晶特性分析 23 4.2.1 AFM分析 24 4.2.2 FTIR分析 26 4.2.3 SEM分析 26 4.2.5 XRD分析 27 4.2.6 PL/TrPL分析 28 4.3 電性分析 30 4.3.1 光導體元件照光下電特性分析 30 4.3.2 光導體元件對大氣、強光之耐受度分析 33 4.3.3 C-AFM分析 34 第五章 結論 72 5.1 實驗結論 72 5.2 未來工作 74 參考文獻 75

    [1] Sum, T. C.; Mathews, N., Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 2014, 7 (8), 2518-2534.

    [2] Chen, W.-Y.; Deng, L.-L.; Dai, S.-M.; Wang, X.; Tian, C.-B.; Zhan, X.-X.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S., Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (38), 19353-19359.

    [3] Fan, P.; Gu, D.; Liang, G. X.; Luo, J. T.; Chen, J. L.; Zheng, Z. H.; Zhang, D. P., High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci Rep 2016, 6, 29910.

    [4] W. Nie et al., “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science, 347, 522, 2015.

    [5] H. Cho et al., “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science, 350, 1222, 2015.

    [6] Zhang, L.; Yang, X.; Jiang, Q.; Wang, P.; Yin, Z.; Zhang, X.; Tan, H.; Yang, Y. M.; Wei, M.; Sutherland, B. R.; Sargent, E. H.; You, J., Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat Commun 2017, 8, 15640.

    [7] Leyden, M. R.; Meng, L.; Jiang, Y.; Ono, L. K.; Qiu, L.; Juarez-Perez, E. J.; Qin, C.; Adachi, C.; Qi, Y., Methylammonium Lead Bromide Perovskite Light-Emitting Diodes by Chemical Vapor Deposition. J Phys Chem Lett 2017, 8 (14), 3193-3198.

    [8] Dou, L.; Yang, Y. M.; You, J.; Hong, Z.; Chang, W. H.; Li, G.; Yang, Y., Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun 2014, 5, 5404.

    [9] Wang, H.; Kim, D. H., Perovskite-based photodetectors: materials and devices. Chem Soc Rev 2017, 46 (17), 5204-5236.

    [10] Horvath, E.; Spina, M.; Szekrenyes, Z.; Kamaras, K.; Gaal, R.; Gachet, D.; Forro, L., Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Lett 2014, 14 (12), 6761-6.

    [11] Kojima, A. et al., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells” , J. Am. Chem. Soc., 131, 6560, 2009.

    [12] M. Saliba et al., “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance”, Science, 354, 206, 2016.

    [13] Cai, M.; Wu, Y.; Chen, H.; Yang, X.; Qiang, Y.; Han, L., Cost-Performance Analysis of Perovskite Solar Modules. Adv Sci (Weinh) 2017, 4 (1), 1600269.

    [14] Zhang, F.; Yang, B.; Li, Y.; Deng, W.; He, R., Extra long electron–hole diffusion lengths in CH3NH3PbI3−xClx perovskite single crystals. Journal of Materials Chemistry C 2017, 5 (33), 8431-8435.

    [15] Deng, W.; Zhang, X.; Huang, L.; Xu, X.; Wang, L.; Wang, J.; Shang, Q.; Lee, S. T.; Jie, J., Aligned Single-Crystalline Perovskite Microwire Arrays for High-Performance Flexible Image Sensors with Long-Term Stability. Adv Mater 2016, 28 (11), 2201-8.

    [16] Xing, J.; Liu, X. F.; Zhang, Q.; Ha, S. T.; Yuan, Y. W.; Shen, C.; Sum, T. C.; Xiong, Q., Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. Nano Lett 2015, 15 (7), 4571-7.

    [17] Zhu, C.; Tang, Y.; Chen, F.; Manohari, A. G.; Zhu, Y.; Shi, Z.; Xu, C., Fabrication of self-assembly polycrystalline perovskite microwires and photodetectors. Journal of Crystal Growth 2016, 454, 121-127.

    [18] Gao, L.; Zeng, K.; Guo, J.; Ge, C.; Du, J.; Zhao, Y.; Chen, C.; Deng, H.; He, Y.; Song, H.; Niu, G.; Tang, J., Passivated Single-Crystalline CH3NH3PbI3 Nanowire Photodetector with High Detectivity and Polarization Sensitivity. Nano Lett 2016, 16 (12), 7446-7454.

    [19] Deng, W.; Huang, L.; Xu, X.; Zhang, X.; Jin, X.; Lee, S. T.; Jie, J., Ultrahigh-Responsivity Photodetectors from Perovskite Nanowire Arrays for Sequentially Tunable Spectral Measurement. Nano Lett 2017, 17 (4), 2482-2489.

    [20] Thirumal, K.; Chong, W. K.; Xie, W.; Ganguly, R.; Muduli, S. K.; Sherburne, M.; Asta, M.; Mhaisalkar, S.; Sum, T. C.; Soo, H. S.; Mathews, N., Morphology-Independent Stable White-Light Emission from Self-Assembled Two-Dimensional Perovskites Driven by Strong Exciton–Phonon Coupling to the Organic Framework. Chemistry of Materials 2017, 29 (9), 3947-3953.

    [21] Chen, Y.; Sun, Y.; Peng, J.; Tang, J.; Zheng, K.; Liang, Z., 2D Ruddlesden-Popper Perovskites for Optoelectronics. Adv Mater 2018, 30 (2).

    [22] Quan, L. N.; Yuan, M.; Comin, R.; Voznyy, O.; Beauregard, E. M.; Hoogland, S.; Buin, A.; Kirmani, A. R.; Zhao, K.; Amassian, A.; Kim, D. H.; Sargent, E. H., Ligand-Stabilized Reduced-Dimensionality Perovskites. J Am Chem Soc 2016, 138 (8), 2649-55.

    [23] Saidaminov, M. I.; Abdelhady, A. L.; Murali, B.; Alarousu, E.; Burlakov, V. M.; Peng, W.; Dursun, I.; Wang, L.; He, Y.; Maculan, G.; Goriely, A.; Wu, T.; Mohammed, O. F.; Bakr, O. M., High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun 2015, 6, 7586.

    [24] Tsai, C.-M.; Wu, G.-W.; Narra, S.; Chang, H.-M.; Mohanta, N.; Wu, H.-P.; Wang, C.-L.; Diau, E. W.-G., Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%. Journal of Materials Chemistry A 2017, 5 (2), 739-747.

    [25] Seo, Y.-H.; Kim, E.-C.; Cho, S.-P.; Kim, S.-S.; Na, S.-I., High-performance planar perovskite solar cells: Influence of solvent upon performance. Applied Materials Today 2017, 9, 598-604.

    [26] Fateev, S. A.; Petrov, A. A.; Khrustalev, V. N.; Dorovatovskii, P. V.; Zubavichus, Y. V.; Goodilin, E. A.; Tarasov, A. B., Solution Processing of Methylammonium Lead Iodide Perovskite from γ-Butyrolactone: Crystallization Mediated by Solvation Equilibrium. Chemistry of Materials 2018, 30 (15), 5237-5244.

    [27] Chen, H. W.; Sakai, N.; Jena, A. K.; Sanehira, Y.; Ikegami, M.; Ho, K. C.; Miyasaka, T., A Switchable High-Sensitivity Photodetecting and Photovoltaic Device with Perovskite Absorber. J Phys Chem Lett 2015, 6 (9), 1773-9.

    [28] R. J. Mclntyre, “Measurement”, 3, 146, 1985.

    [29] Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H., Full printable processed mesoscopic CH(3)NH(3)PbI(3)/TiO(2) heterojunction solar cells with carbon counter electrode. Sci Rep 2013, 3, 3132.

    [30] Li, G.; Huang, J.; Zhu, H.; Li, Y.; Tang, J.-X.; Jiang, Y., Surface Ligand Engineering for Near-Unity Quantum Yield Inorganic Halide Perovskite QDs and High-Performance QLEDs. Chemistry of Materials 2018, 30 (17), 6099-6107.

    [31] Idigoras, J.; Todinova, A.; Sanchez-Valencia, J. R.; Barranco, A.; Borras, A.; Anta, J. A., The interaction between hybrid organic-inorganic halide perovskite and selective contacts in perovskite solar cells: an infrared spectroscopy study. Phys Chem Chem Phys 2016, 18 (19), 13583-90.

    [32] Zhang, C.; Luo, Y.; Chen, X.; Chen, Y.; Sun, Z.; Huang, S., Effective Improvement of the Photovoltaic Performance of Carbon-Based Perovskite Solar Cells by Additional Solvents. Nanomicro Lett 2016, 8 (4), 347-357.

    [33] Rahman, M. M.; Uekawa, N.; Shiba, F.; Okawa, Y.; Sakai, M.; Yamamoto, K.; Kudo, K.; Konishi, T., Effect of the filtration of PbI2solution for zinc oxide nanowire based perovskite solar cells. Japanese Journal of Applied Physics 2016, 55 (1S).

    [34] Zhao, T.; Chueh, C.-C.; Chen, Q.; Rajagopal, A.; Jen, A. K. Y., Defect Passivation of Organic–Inorganic Hybrid Perovskites by Diammonium Iodide toward High-Performance Photovoltaic Devices. ACS Energy Letters 2016, 1 (4), 757-763.

    [35] Pham, N. D.; Tiong, V. T.; Yao, D.; Martens, W.; Guerrero, A.; Bisquert, J.; Wang, H., Guanidinium thiocyanate selective Ostwald ripening induced large grain for high performance perovskite solar cells. Nano Energy 2017, 41, 476-487.

    [36] S. D. Stranks et al, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber”, Science, 342, 341, 2013.

    [37] Zhang, Y.; Lv, H.; Cui, C.; Xu, L.; Wang, P.; Wang, H.; Yu, X.; Xie, J.; Huang, J.; Tang, Z.; Yang, D., Enhanced optoelectronic quality of perovskite films with excess CH3NH3I for high-efficiency solar cells in ambient air. Nanotechnology 2017, 28 (20), 205401.

    [38] Jia, X.; Hu, Z.; Zhu, Y.; Weng, T.; Wang, J.; Zhang, J.; Zhu, Y., Facile synthesis of organic–inorganic hybrid perovskite CH3NH3PbI3 microcrystals. Journal of Alloys and Compounds 2017, 725, 270-274.

    [39] Wang, W.; Zhao, D.; Zhang, F.; Li, L.; Du, M.; Wang, C.; Yu, Y.; Huang, Q.; Zhang, M.; Li, L.; Miao, J.; Lou, Z.; Shen, G.; Fang, Y.; Yan, Y., Highly Sensitive Low-Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Near-Infrared Region. Advanced Functional Materials 2017, 27 (42).

    [40] Zhang, L.; Ju, M. G.; Liang, W., The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation. Phys Chem Chem Phys 2016, 18 (33), 23174-83.

    [41] Juarez-Perez, E. J.; Sanchez, R. S.; Badia, L.; Garcia-Belmonte, G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J., Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. J Phys Chem Lett 2014, 5 (13), 2390-4.

    [42] Lian, Z.; Yan, Q.; Lv, Q.; Wang, Y.; Liu, L.; Zhang, L.; Pan, S.; Li, Q.; Wang, L.; Sun, J. L., High-Performance Planar-Type Photodetector on (100) Facet of MAPbI3 Single Crystal. Sci Rep 2015, 5, 16563.

    無法下載圖示 校內:2024-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE