| 研究生: |
洪文啟 Hung, Wen-Chi |
|---|---|
| 論文名稱: |
以溶膠凝膠法製備改質光觸媒處理含氯揮發性有機物之研究 Study on photocatalytic degradation of Cl-VOCs using pure and metal-ions doping TiO2 prepared by the sol-gel method |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 溶膠凝膠技術 、光降解 、二氯甲烷 、活性衰退現象 、1,2二氯乙烷 、金屬離子摻雜 、Fe/TiO2 、V/TiO2 、Pd/TiO2 、Fe-V-TiO2 |
| 外文關鍵詞: | Sol-gel technique, Photodegradation, Dichloromethane, deactivation phenomena, 1,2-dichloroethane,, Metal ion-doping, Fe/TiO2, V/TiO2, Pd/TiO2, Fe-V-TiO2 |
| 相關次數: | 點閱:132 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著經濟成長的結果,國人近年來對生活環境品質的要求日益增高,對工業所帶來的污染及健康影響日益重視,尤其以揮發性有機氣體(VOCs)所產生的臭味更是屢屢引起廠區附近的居民抗議。揮發性有機氣體不僅會對人體各類器官產生不同程度的危害,而且可能與大氣中的氮氧化物等反應形成光化學煙霧;此外,有些VOCs即使在對人體危害程度不大的極低濃度下亦會產生令人難以忍受的惡臭,因此如何去除此類揮發性有機氣體之研究乃刻不容緩之事。一般傳統的VOCs去除方法有吸附劑吸附法、化學洗滌法、紫外線/臭氧法、焚化/觸媒焚化法、生物濾床法等。光催化為目前處理揮發性有機物的技術中較新穎的處理技術,具有經濟性、非選擇性及室溫下可進行光催化分解有機物等特性,為具發展潛力的最終處理程序。
本研究以溶膠凝膠法自行製備TiO2,Fe/TiO2,V/TO2,Pd/TiO2 和Fe-V-TiO2處理二氯甲烷及1,2二氯乙烷。輔助實驗如XRD, SEM, BET, UV-Visible spectra, XPS, TG/DTA, TEM及EDS用來分析鑑定改質光觸媒之物理及化學性質。
由改質Fe/TiO2光觸媒處理二氯甲烷之實驗中可發現光觸媒的鍛燒溫度及水汽的存在均會影響光觸媒活性。添加鐵離子可增加光觸媒活性,最佳的Fe3+添加量為 Fe/Ti = 0.005 mol%,但是若鐵離子添加量過多將使鐵離子變成電子/電洞的複合中心空穴對,降低光催化活性。由紫外-可見光光譜顯示 Fe/TiO2顯示隨著鐵離子濃度的增加使得在可見光區域吸收度增加。二氯甲烷光催化降解反應之中間產物包括CHCl3、 CCl4,、CH2Cl2、Cl2及COCl2。鐵離子的存在可減少氯元素的吸附在光觸媒表面。
由純TiO2及改質後之Fe/TiO2及V/TiO2光觸媒處理1,2-二氯乙烷之實驗中可發現光催化效能和停留時間長短有關,且水氣會與1,2-二氯乙烷在光觸媒表面上產生競爭性吸附。由XRD分析光觸媒的晶相參雜anatase及rutile,且以anatase為主要之晶相。從TEM影像可知光觸媒的尺寸約為10-20 nm。從XPS分析中可知添加Fe、V離子的形式以Fe(Ⅲ)及V(IV) 形式存在。Fe(Ⅲ)及V(IV)可減緩表面毒化現象,且可作為電子/電洞的陷阱,減緩電子及電洞再結合的速率,增加光催化活性,最佳的Fe3+添加量為 Fe/Ti = 0.001 mol%,最佳的V4+添加量為 V/Ti = 0.01 mol%。1,2-二氯乙烷光催化降解反應之產物包括H2O、CO、CO2、C2H5Cl、CH2Cl2、Cl2及HCl。
由純TiO2及改質後Pd/TiO2光觸媒處理1,2-二氯乙烷之實驗中可知Pd/TiO2之光觸媒活性比純TiO2效果差。活性衰退的現象會發生在當毒害物質以不可逆的化學吸附形式吸附在光觸媒的反應座,因而減少了可進行光觸媒反應的活性座。從SEM及EDS的結果可明顯看出Cl出現在Pd/TiO2的表面上,顯示含氯之物質吸附在Pd/TiO2表面上產生毒化現象使觸媒活性降低。
由改質Fe-V-TiO2光觸媒處理1,2-二氯乙烷之實驗中可知,共同添加Fe(Ⅲ)及V(IV)之光觸媒活性較純TiO2、P25、或單獨僅添加Fe及V之光觸媒活性為佳。如同之前提及Fe(Ⅲ)及V(IV)對P25對增加光催化反應之機制,共同添加Fe(Ⅲ)及V(IV)之光觸媒活性最加,Fe-V-TiO2 最佳的Fe3+及V4+之添加量為 Fe:V:Ti = 0.0005:0.005:1 mol%。
VOCs are not only harmful on organs of human, but might react with NOX in ambient air to form photochemical smog. Some of VOCs have intolerably foul smell even at very low concentrations. Because people hope to own higher environmental qualities and have increased concerns on VOC pollutions since last decade, EPA has begun to positively develop regulations for petrochemical and semiconductor industries since 1992. The traditional VOC degradation techniques include adsorption, chemical scrubbing, UV/O3 oxidation, incineration/catalytic incineration, bio-filter, etc. Photocatalytic degradation has drawn considerable academic interest as a very economic attractive, non-selective room-temperature process for the degradation of organic pollutants.
In this study, TiO2, Fe/TiO2, V/TO2, Pd/TiO2, and Fe-V-TiO2 prepared by the sol-gel method was demonstrated and characterized. Dichloromethane and 1,2-Dichloroethane are used for the photocatalytic activity test. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), BET surface area, and UV-Visible spectrometry, other instruments such as X-ray photoelectron spectroscopy (XPS), thermogravimetric/differential thermal analysis (TG/DTA), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) were employed to characterize modified photocatalysts.
From the results of dichloromethane photocatalyitc degradation, the calcined temperature of TiO2 and the presence of water vapor influence the photocatalytic activity. The optimum doping amount of iron ions is 0.005 mol%, and this can enhance the photocatalytic activity, while too great an amount will make the iron ions become recombination centers for the electron-hole pairs and reduce the photocatalytic activity. UV-Vis spectra of Fe/TiO2 show an increase in absorbency in the visible light region with the increase in iron ions doping concentration The intermediate of dichloromethane photodegradation includes CHCl3, CCl4, CH2Cl2, Cl2, and COCl2. The presence of iron ions may reduce the adsorption of Cl element on the surface of the photocatalyst.
From 1,2-DCE photocatalytic degradation, the photocatalytic performance is a function of retention time and it would have a competitive adsorption on the active sites of TiO2 between water vapor and 1,2-DCE. From X-ray powder diffraction data, the crystal phase presents a mixture of anatase and rutile with anatase the dominant phase. As seen in TEM images, the crystallites of photocatalysts are spherical particles with a crystallite size about 10-20 nm. UV-Visible absorption spectra of Fe/TiO2 show a slightly increase in absorbancy in the visible light region with the increasing iron ion doping concentration. The X-ray photoelectron spectroscopy results indicate that the Ti 2p3/2 and Ti 2p1/2 photoelectrons for TiO2 and Fe/TiO2 are located at binding energies of 459 eV and 465 eV, respectively, which represent the values of Ti4+ in the TiO2 lattices. The XPS data also indicate that the doped Fe ions exist in the forms of Fe(III). The Fe(III) may alleviate the surface poison phenomenon and act as both h+/e- traps to reduce the recombination rate of h+/e- pairs, and the optimum iron doping amount is 0.001 mol%. The byproducts of 1,2-DCE photodegradation include H2O, CO, CO2, C2H5Cl, CH2Cl2, Cl2, and HCl.
UV-Visible absorption spectra of V/TiO2 show a slightly increase in absorbancy in the visible light region with the increasing vanadium ion doping concentration. The X-ray photoelectron spectroscopy results indicate that the doped vanadium ions should exist in the form of V(IV). The V(IV) may alleviate the surface poison phenomenon and act as both h+/e- traps to reduce the recombination rate of h+/e- pairs, and the optimum vanadium doping amount is 0.01 mol%. The byproducts of 1,2-DCE photodegradation include H2O, CO, CO2, C2H5Cl, CH2Cl2, and HCl.
The photocatalytic activity of Pd/TiO2 is worse than that of nude TiO2 in this study. The deactivation phenomena will occur when the poisonous substances are strongly and irreversibly chemisorbed to the active sites of photocatalysts, therefore reducing the number of available active sites for the photocatalytic reaction. From SEM photographs and EDS results, it is easy to observe the Cl element present on the surface of Pd/TiO2. The presence of palladium ions may increase the adsorption of Cl-compounds adsorbed on the surface of Pd/TiO2. The deactivation phenomena will occur when the poisonous substances are irreversibly chemisorbed to the active sites of photocatalysts.
The photocatalytic activity of Fe-V-TiO2 with Fe:V:Ti = 0.0005:0.005:1 mol% is the highest (η = 85%), followed by Fe-TiO2 with Fe/Ti = 0.001 mol% (η = 71%) > Fe-V-TiO2 with Fe:V:Ti = 0.001:0.01:1 mol% (η = 70%) > V/TiO2 with V/Ti = 0.01 mol% (η = 64%) > Degussa P25 (η = 58%) > TiO2 alone (η = 48%) at the end of experiments. The photocatalytic activity of co-doping with Fe3+ and V4+ is better than that of doping with Fe3+ or V4+ alone, nude TiO2, and P25. The role of Fe(III) and V(IV) mentioned above may be responsible for the enhanced 1,2-DCE photodegradation, as compared to those from P25 or synthesized nude TiO2.This may be due to a cooperative enhancement in the activity of co-doping photocatalysts.
Araña, J., González Díaz, O., Doña Rodríguez, J.M., Herrera Melián, J.A., Garriga i Cabo, C., Pérez Peña, J., Carmen Hidalgo, M., Navío-Santos, J.A., J. Role of Fe3+/Fe2+ as TiO2 dopant ions in photocatalytic degradation of carboxylic acids” Mol. Catal. A 197, 157–171, 2003.
Ahrens, L.H. “The use of ionization potentials” Geochim. Cosmochim. Ac. 1, 155–169, 1952.
Belver, C., López-Muñoz, M.J., Coronado, J.M., Soria, J. “Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors” Appl. Catal. B 46, 497–509, 2003.
Bezrodna, T., Puchkovska, G., Shymanovska, V., Hauser, A. “X-ray and AFM studies of polydisperse TiO2 (anatase) particles” J. Phys. Chem. Solids 66, 1057, 2005.
Brinker, C.J., Scherer, G.W. “SOL-GEL SCIENCE-the physics and chemistry of sol-gel processing” Academic Press Inc., San Diego, 1990.
Chang, C.C., Reo, C.M., Lund, C.R.F. “The effect of a membrane reactor upon catalyst deactivation during hydrodechlorination of dichloroethane” Appl. Catal. B 20, 309–317, 1999.
Cheng, P., Li, W., Zhou, T., Z., Jin, Y., Gu, M. “Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation” J. Photoch. Photobio. A 168, 97–101, 2004.
Chhor, K., Bocquet, J.F., Pommier, C. “Syntheses of submicron TiO2 powders in vapor, liquid and supercritical phases, a comparative study” Mater. Chem. Phys.32, 249–254, 1992.
Choi, W., Termin, A., Hoffmann, M.R., “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics” J. Phys. Chem. 98, 13669-13679, 1994.
Cot, F., Larbot, A., Nabias, G., Cot, L. “Preparation and characterization of colloidal solution derived crystallized titania powder” J. Eur. Ceram. Soc.18, 2175–2181, 1998.
Department of Sustainability, Environment, Water, Population and Communities, Australia. State of knowledge report “Air toxics and indoor air quality in Australia” (ISBN 0 6425 4739 4), 2001.
Demeestere, K., Dewulf, J., Ohno, T., Salgado, P.H., Langenhove, H.V. “Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide” Appl. Catal. B 61, 140–149, 2005.
Dvoranová, D., Brezová, V., Mazúr, M., Malati, M.A. “Investigations of metal-doped titanium dioxide photocatalysts” Appl. Catal. B l37, 91-105, 2002.
Ertl, G., Knözinger, H., Weitkamp, J. “Preparation of Solid Catalysts” Wiley-VCH, Weinheim, 1999.
Frankel, K.A., Jang, B.W.L., Roberts, G.W., Spivey, J.J. “Deactivation of hydrodechlorination catalysts II — Experiments with 1,1-dichloroethylene and 1,1-dichloroethane” Appl. Catal. A, 209, 401–413, 2001.
Fox, M.A., Dulay, M.T. “Heterogeneous Photocatalysis” Chem. Rev. 83, 341-357, 1993.
Fujishima, A., Honda, K. “Electrochemical Photolysis of Water at a Semiconductor electrode” Nature, 238, 37-38, 1972.
Gómez, R., Bertin, V., López, T., Schifter, I., Ferrat, G. “Pt-Sn/Al2O3 sol-gel catalysts: Catalytic properties” J. Mol. Catal. A 109, 55–66, 1996.
Grätzel, M. “Photoelectrochemical cells” Nature 414, 338–344, 2001.
Hagen, J. “Industrial Catalysis–A Practical Approach” Wiley-VCH, Weinheim, 1999.
Harizanov, O., Harizanova, T.I. “Study of sol–gel TiO2 and TiO2–MnO obtained from a peptized solution” Mater. Lett. 49, 165–171, 2001.
Hughes, R. “Deactivation of Catalysys” Academic Press Inc., London, 1984.
Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W. “Environmental Applications of Semiconductor Photocatalysis” Chem. Rev. 95, 69-96, 1995.
Hung, C.H., Mariñas, B.J. “Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films” Environ. Sci. Technol. 31, 1440–1445, 1997.
Iketani, K., Sun, R.D., Toki, M., Hirota, K., Yamaguchi, O. “Sol–gel-derived VχTi1-χO2 films and their photocatalytic activities under visible light irradiation,” Mat. Sci. Eng. B 108, 187–193, 2004.
Ivanova, T., Harizanova, A., Surtchev, M., Nenova, Z. “Investigation of sol–gel derived thin films of titanium dioxide doped with vanadium oxide” Sol. Energ. Mat. Sol. C. 76, 591–598, 2003.
Iwasaki, M., Hara, M., Kawada, H., Tada, H., Ito, S. “Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light” J. Colloid Interf. Sci. 224, 202–204, 2000.
Jin, S., Shiraishi, F. “Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide” Chem. Eng. J. 97, 203–211, 2004.
Jocoby, W.A., Blake, D.M., Fennell, J.A., Boulter, J.E., Vargo, L.M., George, M.C., Dolberg, S.K. “Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor” J. Air Waste Manage. Assoc. 46, 891-898, 1996.
Kang, M., Lee, M.H. “Synthesis and characterization of Al-, Bi-, and Fe-incorporated mesoporous titanosilicate (MPTS) materials and their hydrophilic properties” Appl. Catal. A 284, 215–222, 2005.
Kari, P., Mika, S. “Heterogeneous water phase catalysis as an environmental application: a review” Chemosphere 48, 1047-1060, 2002.
Karvinen, S. “The effects of trace elements on the crystal properties of TiO2” Solid State Sci. 5, 811–819, 2003.
Klosek, S., Raftery, D. “Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol” J. Phys. Chem. B 105, 2815–2819, 2001.
Kung, H.H., Ko, E.I. “Preparation of oxide catalysts and catalyst supports–a review of recent advances” Chem. Eng. J. 64, 203–214, 1996.
Kureti, S., Weisweiler, W. “A new route for the synthesis of high surface area γ-aluminium oxide xerogel” Appl. Catal. A 225, 251–259, 2002.
Linsebigler, A.L., Lu, G., Yates, J.T. “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results” Chem. Rev. 95, 735-758, 1995.
Lee, H., Jeong, H.D., Chung, Y.S., Lee, H.G., Chung, M.J., Kim, S., Kim, H.S. “Fluorination of CF3CH2Cl over Cr–Mg Fluoride Catalyst: The Effect of Temperature on the Catalyst Deactivation” J. Catal. 169, 307–316, 1997.
Li, W., Shah, S.I., Huang, C.P., Jung, O., Ni, C. “Metallorganic chemical vapor deposition and characterization of TiO2 nanoparticles” Mater. Sci. Eng. B 96, 247–253, 2002.
Liu, Y., Wang, H.Q., Wu, Z.B., “Characterization of metal doped-titanium dioxide and behaviors on photocatalytic oxidation of nitrogen oxides” J. Environ. Sci.19, 1505–1509, 2007.
Hirano, K., Nitta, H., Sawada, K. “Effect of sonication on the photo-catalytic mineralization of some chlorinated organic compounds” Ultrason. Sonochem.12, 271–276, 2005.
Martin, S.T., Morrison, C.L., Hoffmann, M.R.”Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles” J. Phys. Chem. 98, 13695–13704, 1994.
Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D. “Handbook of X-ray Photoelectron Spectroscopy” Physical Electronics, Inc. Minnesota, 1995.
Musić, S., Gotić, M., Ivanda, M., Popović, S., Turković, A., Trojko, R., Sekulić, A. “Chemical and microstructural properties of TiO2 synthesize by sol-gel procedure” Mater. Sci. Eng. B 47, 33–40, 1997.
Nagaveni, K., Hegde, M.S., Ravishankar, N., Subbanna, G.N., Madras, G. “Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity” Langmuir 20, 2900–2907, 2004.
Nasser, S.A. “X-ray photoelectron spectroscopy study on the composition and structure of BaTiO3 thin films deposited on silicon” Appl. Surf. Sci. 157, 14–22, 2000.
NIST Standard Reference Database, 2005. NIST Chemistry WebBook, web site: http://webbook.nist.gov/chemistry/.
Obee, T., Brown, R.T. “TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1, 3-butadiene” Environ. Sci. Technol. 29, 1223–1231, 1995.
Pal, B., Sharon, M., Nogami, G. “Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties” Mater. Chem. Phys. 59, 254-261, 1999.
Pavia, D.L., Lampman, G.M., Kriz, G.S. “Introduction to Spectroscopy” Brooks/Cole, Thomson Learning, U.S.A., 13–101, 2001.
Pinard, L., Mijoin, J., Magnoux, P., Guisnet, M. “Oxidation of chlorinated hydrocarbons over Pt zeolite catalysts 1-mechanism of dichloromethane transformation over PtNaY catalysts” J. Catal. 215, 234–244, 2003.
Qin, D., Chang, W., Zhou, J., Chen, Y. “An investigation of the preparation of TiO2-based catalysts using methods of thermal analysis” Thermochim. Acta 236, 205–216, 1994.
Richardson, J.T. “Principles of Catalyst Developmen” Plenum Press, New York, 1989.
Ruiz, A.M., Cornet, A., Shimanoe, K., Morante, J.R., Yamazoe, N. “Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments” Sensor Actuat. B 108, 34–40, 2005.
Sakthivel, S., M. Shankar, V., Palanichamy, M., Arabindoo, B., Bahnemann, D.W., Murugesan, V. “Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst” Water Res. 38, 3001–3008, 2004.
Satterfield, C. N. “Heterogeneous Catalysis in Industrial Practice” McGraw-Hill, New York, 1991.
Schneider, R., Kiessling, D., Herzschuh, R., Wendt, G. “Total Oxidation of chlorinated hydrocarbons on LaMnO3 perovskite type catalyst” React. Kinet. Catal. Lett. 61, 245–250, 1997.
Scofield, J.H. “Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV” J. Electron. Spectrosc. 8, 129–137, 1976.
Selloni, A., Vittadini, A., Grätzel, M. “The adsorption of small molecules on the TiO2 anatase (101) surface by first-principles molecular dynamics” Surf. Sci. 402-404, 219–222, 1998.
Seto, T., Shimada, M., Okuyama, K. “Evaluation of Sintering of Nanometer-Sized Titania Using Aerosol Method” Aerosol Sci. Tech. 23, 183–200, 1995.
Shah, S.I., Li, W., Huang, C.P., Jung, O., Ni, C. “Study’ of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles” P. Natl. Acad. Sci. USA 99, 6482–6486, 2002.
Silverstein, R.M., Webster, F.X. “Spectrometric Identification of Organic Compounds” John Wiley, New York, 71–141, 1998.
Sivakumar, S., Pillai, P.K,, Mukundan, P., Warrier, K.G.K. “Sol–gel synthesis of nanosized anatase from titanyl sulfate” Mater. Lett.57, 330–335, 2002.
Sonawane, R.S., Hegde, S.G., Dongare, M.K. “Preparation of titanium (IV) oxide thin film photocatalyst by sol–gel dip coating” Mater. Chem. Phys.77, 744–750, 2002.
Sonawane, R.S., Kale, B.B., Dongare, M.K. “Preparation and photo-catalytic activity of Fe–TiO2 thin films prepared by sol–gel dip coating” Mater. Chem. Phys. 85, 52, 2004.
Sonawane, R.S., Dongare, M.K. “Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight” J. Mol. Catal. A 243, 68–76, 2006.
Tahir, S.F., Koh, C.A. “Catalytic destruction of volatile organic compound emissions by platinum based catalyst” Environ. Sci. Pollut. R. 3, 20, 1996.
Twigg, M.V., “CATALYST HANDBOOK” Wolfe Publishing Ltd, London, 1989.
USEPA, Code of Federal Regulations, 40: Chapter 1, Subchapter C, Part 51, Subpart F, 51100(http://cfr.vlex.com/vid/19784887), 2009.
USDHHS, 11th edition of Report on Carcinogens, U.S. Department of Health and Human Services, Washington, DC, 2004.
USDHHS, Toxicological profile for 1,2-dichloroethane, Public Health Service Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Washington, DC, 2001.
Vickerman, J.C. “Surface Analysis–The Principal Techniques” John Wiley, New York, 43–98, 1997.
Wang, J.A., Limas-Ballesteros, R, Lo´pez, T., Moreno, A., Go´mez, R., Novaro, O., Bokhimi, X. “Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts” J. Phys. Chem. B 105, 9692–9698, 2001.
Wang, Z.M., Yang, G., Biswas, P., Bresser, W., Boolchand, P. “Processing of iron-doped titania powders in flame aerosol reactors” Powder Technol. 114, 197-204, 2001.
Westmoreland, P.R., Harrison, D.P. “Evaluation of candidate solids for high-temperature desulfurization of low-Btu gases” Environ. Sci. Technol. 10, 659, 1976.
Wijngaarden, R.J., Kronberg, A., Westerterp, K.R. “Industiral Catalysis-Optimizing Catalysts and Processes” Wiley-VCH, Weinheim, 1998.
Yoneyama, H., Haga, S., Yamanaka, S. “Photocatalytic activities of microcrystalline TiO2 incorporated in sheet silicates of clay” J. Phys. Chem. 93, 4833–4837, 1989.
Yu, J., Zhao, X., Zhao, Q. “Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method” Mater. Chem. Phys. 69, 25–29, 2001.
Yuan, Z.H., Zhang, L.D. “Influence of ZnO + Fe2O3 additives on the anatase-to-rutile transformation of nanometer TiO2 powders” Nanostruct. Mater. 10, 1127-1133, 1998.
Yuan, Z.H., Jia, J.H., Zhang, L.D. “Influence of co-doping of Zn(II) + Fe(III) on the photocatalytic activity of TiO2 for phenol degradation” Mater. Chem. Phys. 73, 323–326, 2002.
Zhu, Y., Zhang, L., Yao, W., Cao, L. “The chemical states and properties of doped TiO2 film photocatalyst prepared using the sol–gel method with TiCl4 as a precursor” Appl. Surf. Sci. 158, 32–37, 2000.
Zhu, J., Zheng, W., Hea, B., Zhang, J., Anpo, M. J. “Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water” Mol. Catal. A 216, 35–43, 2004.