簡易檢索 / 詳目顯示

研究生: 陳似姍
Chen, Sih-Shang
論文名稱: 蟲草素透過 ROS 產生和 DNA 損傷增強放射敏感性以誘導小鼠萊式腫瘤細胞凋亡
Cordycepin enhances radiosensitivity to induce mouse Leydig tumor cell death through ROS production and DNA damage
指導教授: 黃步敏
Huang, Bu-Miin
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 86
中文關鍵詞: 放射線蟲草素小鼠萊式腫瘤細胞活性氧物質(ROS)DNA損傷
外文關鍵詞: radiation, cordycepin, mouse Leydig tumor cells, ROS, DNA damage
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ABSTRACTS Abstract in Chinese I Abstract in English III ACKNOWLEDGEMENTS V TABLE OF CONTENTS VII LIST OF FIGURES X INTRODUCTION 1 MATERIALS AND METHODS Chemicals and Reagents 8 Cell Culture 12 Morphology Observation 12 MTT Viability Test 12 Trypan Blue Exclusion Assay 13 Irradiation Treatment 13 Synergistic Interaction Analysis 14 Determination of ROS production 14 Signal pathway confirmation with inhibitors 14 Protein Extraction and Western Blot 14 Comet assay 15 Animal Experiments 16 Immunohistochemistry staining 17 Statististic 18 RESULTS Cordycepin decreased MA-10 and TM3 cell viabilities in time- and dose-dependent manners 19 Cordycepin and/or radiation caused morphological changes related to cell death upon MA-10 and TM3 cells 19 Cordycepin and/or radiation decreased MA-10 and TM3 cell viability in dose-dependent manners in trypan blue exclusion assay 20 Cordycepin and radiation induced ROS accumulation in MA-10 cell 21 The ratio of cell population changes after cordycepin and/or radiation treatment upon ROS production in MA-10 cells 22 ROS inhibitor suppresses cordycepin- and/or radiation-induced ROS accumulation in MA-10 cells 22 The ratio of cell population changes after cordycepin and/or radiation treatment in MA-10 cells in the presence or absence ROS inhibitor 23 Cell viability of cordycepin and/or radiation-treated MA-10 cells in the presence or absence ROS inhibitor 23 Cordycepin and radiation induce apoptosis through caspase cascade in mouse Leydig cell lines 24 The effect of cordycepin and radiation on autophagy related proteins in TM3 cells 24 Cordycepin and radiation induce DNA damage through γH2AX in MA-10 and TM3 cells 25 Cordycepin and radiation induce DNA damage through ATM in MA-10 cells 25 Cordycepin and radiation regulate DNA damage through CHK2 in MA-10 cells 26 Cordycepin and radiation regulate DNA damage through ATR in MA-10 cells 26 Cordycepin and radiation induce DNA damage through CHK1 in MA-10 cells 26 Cordycepin and radiation induce DNA damage through p53 on MA-10 cells 27 Cordycepin and radiation induce DNA damage in comet assay in MA-10 cells 27 Combination of cordycepin and radiation suppressed MA-10 cell tumorigenesis in vivo 28 DISCUSSION 31 REFERENCES 81

    Adamowicz, M. 2018. Breaking up with ATM. J Immunol Sci, 2(1), 26-31.
    Amaravadi, R. K., Yu, D., Lum, J. J., Bui, T., Christophorou, M. A., Evan, G. I., Thomas-Tikhonenko, A., and Thompson, C. B. 200
    7. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest, 117(2), 326-336. doi:10.1172/jci28833
    Antoni, L., Sodha, N., Collins, I., and Garrett, M. D. 2007. CHK2 kinase: cancer susceptibility and cancer therapy - two sides of the same coin? Nat Rev Cancer, 7(12), 925-936. doi:10.1038/nrc2251
    Azzam, E. I., Jay-Gerin, J. P., and Pain, D. 2012. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett, 327(1-2), 48-60. doi:10.1016/j.canlet.2011.12.012
    Baird, D. C., Meyers, G. J., and Hu, J. S. 2018. Testicular Cancer: Diagnosis and Treatment. Am Fam Physician, 97(4), 261-268.
    Bakkenist, C. J., and Kastan, M. B. 2003. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421(6922), 499-506. doi:10.1038/nature01368
    Baskar, R., Lee, K. A., Yeo, R., and Yeoh, K. W. 2012. Cancer and radiation therapy: current advances and future directions. Int J Med Sci, 9(3), 193-199. doi:10.7150/ijms.3635
    Bellezza, I., Giambanco, I., Minelli, A., and Donato, R. 2018. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res, 1865(5), 721-733. doi:10.1016/j.bbamcr.2018.02.010
    Boulares, A. H., Yakovlev, A. G., Ivanova, V., Stoica, B. A., Wang, G., Iyer, S., and Smulson, M. 1999. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. The Journal of biological chemistry, 274(33), 22932–22940. doi:10.1074/jbc.274.33.22932
    Brodská, B., and Holoubek, A. 2011. Generation of reactive oxygen species during apoptosis induced by DNA-damaging agents and/or histone deacetylase inhibitors. Oxidative medicine and cellular longevity, 2011, 253529. doi:10.1155/2011/253529
    Carneiro, B. A., and El-Deiry, W. S. 2020. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol, 17(7), 395-417. doi:10.1038/s41571-020-0341-y
    Chatterjee, N., and Walker, G. C. 2017. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen, 58(5), 235-263. doi:10.1002/em.22087
    Chen, J. 2016. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harbor perspectives in medicine, 6(3), a026104. doi:10.1101/cshperspect.a026104
    Chen, N., and Debnath, J. 2010. Autophagy and tumorigenesis. FEBS letters, 584(7), 1427–1435. doi:10.1016/j.febslet.2009.12.034
    Chen, Y., and Klionsky, D. J. 2011. The regulation of autophagy - unanswered questions. J Cell Sci, 124(Pt 2), 161-170. doi:10.1242/jcs.064576
    Chen, Y. Y., Chen, C. H., Lin, W. C., Tung, C. W., Chen, Y. C., Yang, S. H., Huang, B. M., and Chen, R. J. 2021. The Role of Autophagy in Anti-Cancer and Health Promoting Effects of Cordycepin. Molecules, 26(16). doi:10.3390/molecules26164954
    Choi, E. O., Park, C., Hwang, H. J., Hong, S. H., Kim, G. Y., Cho, E. J., Kim, W. J., and Choi, Y.H. 2016. Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells. Int J Oncol, 249(3),1009-1018. doi:10.3892/ijo.2016.3606
    Chou, T. C., and Talalay, P. 1984. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 22, 27-55. doi:10.1016/0065-2571(84)90007-4.
    Chung, P., and Warde, P. 2016. Testicular cancer: germ cell tumours. BMJ Clin Evid, 2016:1807. PMID: 26741128; PMCID: PMC4704678.
    Dayal, R., Singh, A., Pandey, A., and Mishra, K. P. 2014. Reactive oxygen species as mediator of tumor radiosensitivity. J Cancer Res Ther, 10(4), 811-818. doi:10.4103/0973-1482.146073
    Dong, J., Li, Y., Xiao, H., Luo, D., Zhang, S., Zhu, C., Jiang, M., Cui, M., Lu, L., and Fan, S. 2019. Cordycepin sensitizes breast cancer cells toward irradiation through elevating ROS production involving Nrf2. Toxicol Appl Pharmacol, 364, 12-21. doi:10.1016/j.taap.2018.12.006
    Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4), 495-516. doi:10.1080/01926230701320337
    Gibellini, L., Pinti, M., Nasi, M., De Biasi, S., Roat, E., Bertoncelli, L., and Cossarizza, A. 2010. Interfering with ROS Metabolism in Cancer Cells: The Potential Role of Quercetin. Cancers, 2(2), 1288–1311. doi:10.3390/cancers2021288
    Green, L. M., Reade, J. L., and Ware, C. F. 1984. Rapid colorimetric assay for cell viability: application to the quantitation of cytotoxic and growth inhibitory lymphokines. J Immunol Methods, 70(2), 257-268.
    Holley, A. K., Miao, L., St Clair, D. K., and St Clair, W. H. 2014. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxidants & redox signaling, 20(10), 1567–1589. doi:10.1089/ars.2012.5000
    Jiang, P., and Mizushima, N. 2015. LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods 75, 13–18. doi:10.1016/j.ymeth.2014.11.021
    Jia, S., Ge, S., Fan, X., Leong, K. W., and Ruan, J. 2021. Promoting reactive oxygen species generation: a key strategy in nanosensitizer-mediated radiotherapy. Nanomedicine (Lond), 16(9), 759-778. doi:10.2217/nnm-2020-0448
    Kinner, A., Wu, W., Staudt, C., and Iliakis, G. 2008. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic acids research, 36(17), 5678–5694. doi:10.1093/nar/gkn550
    Konno, T., Melo, E. P., Chambers, J. E., and Avezov, E. 2021. Intracellular Sources of ROS/H2O2 in Health and Neurodegeneration: Spotlight on Endoplasmic Reticulum. Cells, 10(2), 233. doi:10.3390/cells10020233
    Kurz, E. U., Douglas, P., and Lees-Miller, S. P. 2004. Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem, 279(51), 53272-53281. doi:10.1074/jbc.M406879200
    Lan, T., Yu, Y., Zhang, J., Li, H., Weng, Q., Jiang, S., Tian, S., Xu, T., Hu, S., Yang, G., Zhang, Y., Wang, W., Wang, L., Zhu, Q., Rong, X., and Guo, J. 2021. Cordycepin Ameliorates Nonalcoholic Steatohepatitis by Activation of the AMP-Activated Protein Kinase Signaling Pathway. Hepatology, 74(2), 686-703. doi:10.1002/hep.31749
    Levy, J. M. M., Towers, C. G., and Thorburn, A. 2017. Targeting autophagy in cancer. Nat Rev Cancer, 17(9), 528-542. doi:10.1038/nrc.2017.53
    Liou, G. Y., and Storz, P. 2010. Reactive oxygen species in cancer. Free Radic Res, 44(5), 479-496. doi:10.3109/10715761003667554
    Luo, Z., Xu, X., Sho, T., Zhang, J., Xu, W., Yao, J., and Xu, J. 2019. ROS-induced autophagy regulates porcine trophectoderm cell apoptosis, proliferation, and differentiation. Am J Physiol Cell Physiol, 316(2), C198-c209. doi:10.1152/ajpcell.00256.2018
    Lobo, V., Patil, A., Phatak, A., and Chandra, N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 4(8), 118–126. doi: 10.4103/0973-7847.70902
    Ma, Q. 2013. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol, 53, 401-426. doi:10.1146/annurev-pharmtox-011112-140320
    Majno, G., and Joris, I. 1995. Apoptosis, oncosis, and necrosis. An overview of cell death. The American journal of pathology, 146(1), 3–15.
    Martins, I., Raza, S. Q., Voisin, L., Dakhli, H., Allouch, A., Law, F., Sabino, D., De Jong, D., Thoreau, M., Mintet, E., Dugué, D., Piacentini, M., Gougeon, M. L., Jaulin, F., Bertrand, P., Brenner, C., Ojcius, D. M., Kroemer, G., Modjtahedi, N., Deutsch, E., and Perfettini, J. L. 2018. Anticancer chemotherapy and radiotherapy trigger both non-cell-autonomous and cell-autonomous death. Cell death & disease, 9(7), 716. doi:10.1038/s41419-018-0747-y
    Maynard, S., Schurman, S. H., Harboe, C., de Souza-Pinto, N. C., and Bohr, V. A. 2009. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis, 30(1), 2–10. doi:10.1093/carcin/bgn250
    McIlwain, D. R., Berger, T., and Mak, T. W. 2015. Caspase functions in cell death and disease. Cold Spring Harbor perspectives in biology, 5(4), a008656. doi:10.1101/cshperspect.a008656
    Mladenov, E., Fan, X., Dueva, R., Soni, A., and Iliakis, G. 2019. Radiation-dose-dependent functional synergisms between ATM, ATR and DNA-PKcs in checkpoint control and resection in G(2)-phase. Sci Rep, 9(1), 8255. doi:10.1038/s41598-019-44771-6
    Oldenburg, J., Lehne, G., and Fosså, S. D. 2008. [Testicular cancer]. Tidsskr Nor Laegeforen, 128(4), 457-460.
    Ozaki, T., and Nakagawara, A. 2011. Role of p53 in Cell Death and Human Cancers. Cancers, 3(1), 994–1013. doi:10.3390/cancers3010994
    Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., and Migliaccio, A. 2020. ROS in cancer therapy: the bright side of the moon. Exp Mol Med, 52(2), 192-203. doi:10.1038/s12276-020-0384-2
    Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., and Bitto, A. 2017. Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 2017, 8416763. doi:10.1155/2017/8416763
    Puissant, A., Robert, G., and Auberger, P. 2010. Targeting autophagy to fight hematopoietic malignancies. Cell cycle (Georgetown, Tex.), 9(17), 3470–3478. doi:10.4161/cc.9.17.13048
    Ray, A., Blevins, C., Wani, G., and Wani, A. A. 2016. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle. PloS one, 11(7), e0159344. doi:10.1371/journal.pone.0159344
    Redza-Dutordoir, M., and Averill-Bates, D. A. 2016. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et biophysica acta, 1863(12), 2977–2992. doi:10.1016/j.bbamcr.2016.09.012
    Roumaud, P., Rwigemera, A., and Martin, L. J. 2017. Transcription factors SF1 and cJUN cooperate to activate the Fdx1 promoter in MA-10 Leydig cells. J Steroid Biochem Mol Biol, 171, 121-132. doi:10.1016/j.jsbmb.2017.03.003
    Saraste A., and Pulkki K. 2000. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 3:528-37. doi: 10.1016/s0008-6363(99)00384-3.
    Seong, d., Hong, S., Muthusami, S., Kim, W. D., Yu, J. R., and Park, W. Y. 2016. Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. European journal of pharmacology, 771, 77–83. doi:10.1016/j.ejphar.2015.12.022
    Shashidhar, M. G., Giridhar, P., Udaya Sankar, K., and Manohar, B. 2013. Bioactive principles from Cordyceps sinensis: A potent food supplement - A review. J Funct Foods, 5(3), 1013-1030. doi:10.1016/j.jff.2013.04.018
    Shibata, A., and Jeggo, P. A. 2021. ATM's Role in the Repair of DNA Double-Strand Breaks. Genes, 12(9), 1370. doi:10.3390/genes12091370
    Srinivas, U. S., Tan, B., Vellayappan, B. A., and Jeyasekharan, A. D. 2019. ROS and the DNA damage response in cancer. Redox biology, 25, 101084. doi:10.1016/j.redox.2018.101084
    Tan, L., Song, X., Ren, Y., Wang, M., Guo, C., Guo, D., Gu, Y., Li, Y., Cao, Z., and Deng, Y. 2020. Anti-inflammatory effects of cordycepin: A review. Phytother Res. doi:10.1002/ptr.6890
    Ward, I. M., Minn, K., and Chen, J. 2004. UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. J Biol Chem, 279(11), 9677-9680. doi:10.1074/jbc.C300554200
    Wang, J. S., Wang, H. J., and Qian, H. L. 2018. Biological effects of radiation on cancer cells. Military Medical Research, 5(1), 20. doi:10.1186/s40779-018-0167-4
    Xu, X., Lai, Y., and Hua, Z. C. 2019. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Bioscience reports, 39(1), BSR20180992. doi:10.1042/BSR20180992
    Yang, L. Y., Chen, A., Kuo, Y. C., and Lin, C. Y. 1999. Efficacy of a pure compound H1-A extracted from Cordyceps sinensis on autoimmune disease of MRL lpr/lpr mice. J Lab Clin Med, 134(5), 492-500. doi:10.1016/s0022-2143(99)90171-3
    Yang, J., Yu, Y., Hamrick, H. E., and Duerksen-Hughes, P. J. 2003. ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis, 24(10), 1571–1580. doi:10.1093/carcin/bgg137
    Yang, Z., and Klionsky, D. J. 2009. An overview of the molecular mechanism of autophagy. Current topics in microbiology and immunology, 335, 1–32. doi:10.1007/978-3-642-00302-8_1
    Yang, Z. J., Chee, C. E., Huang, S., and Sinicrope, F. A. 2011. The role of autophagy in cancer: therapeutic implications. Molecular cancer therapeutics, 10(9), 1533–1541. doi:10.1158/1535-7163.MCT-11-0047
    Yoon, S. Y., Park, S. J., and Park, Y. J. 2018. The Anticancer Properties of Cordycepin and Their Underlying Mechanisms. Int J Mol Sci, 19(10). doi:10.3390/ijms19103027
    Zheng, Q., Sun, J., Li, W., Li, S., and Zhang, K. 2020. Cordycepin induces apoptosis in human tongue cancer cells in vitro and has antitumor effects in vivo. Arch Oral Biol, 118, 104846. doi:10.1016/j.archoralbio.2020.104846
    Zheng, Q. W., Gao, S. X., Lv, J., Chen, D. Y., Chen, J., Li, H. H., and Guan, J. C. 2018. [Effect of cordycepin on apoptosis and autophagy of tongue cancer cells in vitro and the molecular mechanism]. Nan Fang Yi Ke Da Xue Xue Bao, 38(4), 390-394. doi:10.3969/j.issn.1673-4254.2018.04.04

    無法下載圖示 校內:2027-09-26公開
    校外:2027-09-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE